Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Aplicaciones de la teoría de Morse y de la cirugía al estudio de hipersuperficies y variedades de dimensión baja

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2002

Defense date

1996

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Complutense de Madrid, Servicio de Publicaciones
Citations
Google Scholar

Citation

Abstract

La presente memoria utiliza la teoría de morse y la asociación de asas para el estudio de hipersuperficies y 3-variedades. Entre sus contenidos señalaremos aquí la noción nueva de subvariedad, que se introduce en el contexto de variedades con borde anguloso. Dicha noción es bien acorde con la teoría de funciones de variedad y se adapta mas agradablemente que otras a la transversalidad. Por lo que se refiere a hipersuperficies destaca un estudio cuidadoso y fructífero de los puntos críticos de una función que son "exteriores" a su lugar de ceros, con diversas aplicaciones llamativas a la esfera y el toro. Por ultimo se busca un procedimiento algoritmico que permita la comparación y simplificación de enlaces reverenciados, aportando una solución para pasar de una cadena cerrada simple a un enlace de lickorish, de tipo canónico

Research Projects

Organizational Units

Journal Issue

Description

Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Geometría y Topología, leída el 30-09-1996

UCM subjects

Unesco subjects

Keywords

Collections