La categorización ontológica de la temperatura a través de la percepción térmica en futuros maestros
Loading...
Official URL
Full text at PDC
Publication date
2024
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Instituto de Investigación en Educación Superior, Centro de Investigación y Apoyo a la Educación Científica. Universidad de Buenos Aires
Citation
Campillos, R., y Ezquerra, A. (2024). La categorización ontológica de la temperatura a través de la percepción térmica en futuros maestros. Nuevas Perspectivas. Revista de Educación en Ciencias Naturales y Tecnología, 3(6).
Abstract
Las concepciones alternativas parecen ser universales, trascendiendo criterios de género, cultura o habilidades. Los modelos «intuitivos» creados por los individuos parecen permitir entender el mundo natural y los fenómenos físicos que observan; sin embargo, están alejados de modelos científicamente aceptados. En este sentido, el papel de la percepción se ha considerado como un factor clave en la formación de estas concepciones intuitivas. Recientemente se ha profundizado en el funcionamiento de nuestro sistema de sensación de la temperatura y en los vínculos que parecen existir entre la percepción y las concepciones alternativas. Dentro de este marco, presentamos un estudio que, partiendo de métodos de investigación propios del estudio de la percepción, vincula nuestra forma de sentir la magnitud temperatura con la categorización que realizan los futuros maestros en formación. Las diferencias observadas entre dos grupos de estudiantes con distinta formación nos sugieren un vínculo entre la percepción y la categorización ontológica de la magnitud temperatura. Todos los alumnos sienten la temperatura de forma similar, pero la estiman de forma muy diferente. Los alumnos que han realizado un aprendizaje más experimental realizan una estimación de la magnitud mucho más variable que los alumnos sin este aprendizaje experiencial. Estos últimos, emplean la magnitud numérica como una clasificación categórica y simbólica, sin categorizar ontológicamente la magnitud temperatura como una escala cuantitativa.
Misconceptions appear to be universal, transcending criteria of gender, culture or ability. These "intuitive" models created by individuals seems to allow them to understand the natural world and the physical phenomena they observe; however, they are far from scientifically accepted models. In this sense, the role of perception has been considered a key factor in the formation of intuitive misconceptions. The operation of our sensory system for temperature and the connections that seem to exist between perception and alternative conceptions have recently been explored in more detail. Within this framework, we present a study that, using research methods used in the study of perception, links our way of sensing the temperature magnitude with the categorization made by future teachers-in-training. The differences observed between two groups of students with different backgrounds suggest a link between perception and the ontological categorization of the magnitude temperature. All students feel temperature in a similar way but estimate it very differently. Students who have undergone more experiential learning estimate the magnitude in a much more variable way than students without such experiential learning. The latter use the numerical magnitude as a categorical and symbolic classification, without ontologically categorizing the magnitude temperature as a quantitative scale.
Misconceptions appear to be universal, transcending criteria of gender, culture or ability. These "intuitive" models created by individuals seems to allow them to understand the natural world and the physical phenomena they observe; however, they are far from scientifically accepted models. In this sense, the role of perception has been considered a key factor in the formation of intuitive misconceptions. The operation of our sensory system for temperature and the connections that seem to exist between perception and alternative conceptions have recently been explored in more detail. Within this framework, we present a study that, using research methods used in the study of perception, links our way of sensing the temperature magnitude with the categorization made by future teachers-in-training. The differences observed between two groups of students with different backgrounds suggest a link between perception and the ontological categorization of the magnitude temperature. All students feel temperature in a similar way but estimate it very differently. Students who have undergone more experiential learning estimate the magnitude in a much more variable way than students without such experiential learning. The latter use the numerical magnitude as a categorical and symbolic classification, without ontologically categorizing the magnitude temperature as a quantitative scale.
Description
Referencias bibliográficas:
• Abrahams, I., Homer, M., Sharpe, R., y Zhou, M. (2015). A comparative cross-cultural study of the prevalence and nature of misconceptions in physics amongst English and Chinese undergraduate students. Research in Science & Technological Education, 33(1), 111-130. https://doi.org/10.1080/02635143.2014.987744
• Beck, B., Peña-Vivas, V., Fleming, S., y Haggard, P. (2019). Metacognition across sensory modalities: Vision, warmth, and nociceptive pain. Cognition, 186, 32-41. https://doi.org/10.1016/j.cognition.2019.01.018
• Bunge, M. (2007). La investigación científica (4ta. Ed). Siglo XXI. (Obra original publicada en 1967)
• Bunge, M. (2012). Tratado de Filosofía: Vol. IV. Ontología II: un mundo de sistemas. Editorial Gedisa. (Obra original publicada en 1979)
• Campillos, R. (2024). Conceptualización de la temperatura: de la sensación a la creación del conocimiento [Tesis de Doctorado, Universidad Complutense de Madrid].
• Campillos, R., Agen, F., y Ezquerra, A. (2022). La percepción de temperatura y sus implicaciones educativas. Alambique: Didáctica de las ciencias experimentales, 110, 1004-1004.
• Campillos, R., y Ezquerra, A. (2022). Termosensímetro (Patente ES 1290800 U).
• Campillos, R., Ezquerra-Romano, I., Rodriguez-Artehce, I., Marin, S., y Ezquerra, A. (2021, septiembre). Measuring our own temperature scale(s). From thermal sensations to thermal concepts. En G.S. Carvalho, A.S. Afonso y Z. Anastácio (Eds.), Fostering scientific citizenship in an uncertain world (Proceedings of ESERA 2021), Part 1. Learning Science: Conceptual Understanding (co-ed. A.S. Afonso y M. Malgieri), (pp. 29–36). Braga: CIEC, Universidad de Minho. ISBN 978-972-8952-82-2 .
• Chi, M. T. H., Slotta, J. D., y De Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4(1), 27-43. https://doi.org/10.1016/0959-4752(94)90017-5
• Chiappetta, E. L., y Koballa, T. R., Jr. (2006). Science Instruction in the Middle and Secondary Schools (6th ed.). Pearson Education.
• Cosens, D. J., y Manning, A. (1969). Abnormal electroretinogram from a Drosophila mutant. Nature, 224(5216), 285-287. https://doi.org/10.1038/224285a0
• Craig, A. D. (2003). A new view of pain as a homeostatic emotion. Trends in Neurosciences, 26(6), 303-307. https://doi.org/10.1016/s0166-2236(03)00123-1
• Craig, A. D., y Dostrovsky, J. O. (2001). Differential Projections of Thermoreceptive and Nociceptive Lamina I Trigeminothalamic and Spinothalamic Neurons in the Cat. Journal of Neurophysiology, 86(2), 856-870. https://doi.org/10.1152/jn.2001.86.2.856
• Driver, R. (1989). Students’ conceptions and the learning of science. International Journal of Science Education, 11(5), 481-490. https://doi.org/10.1080/0950069890110501
• Driver, R., Guesne, E., y Tiberghien, A. (Eds.). (1985). Children’s ideas in science. Open University Press.
• Ezquerra, A., y Ezquerra-Romano, I. (2018). From thermosensation to the concepts of heat and temperature: A possible neuroscientific component. EURASIA Journal of Mathematics, Science and Technology Education, 14(12), 1-11. https://doi.org/10.29333/ejmste/97198
• Ezquerra, A., y Ezquerra-Romano, I. (2019). Using neuroscience evidence to train pre-service physics teachers on the concepts of heat and cold. Journal of Physics: Conference Series, 012038. https://doi.org/10.1088/1742-6596/1287/1/012038
• Ezquerra-Romano, I., y Ezquerra, A. (2017). Highway to thermosensation: A traced review, from the proteins to the brain. Reviews in the Neurosciences, 28(1), 45-57. https://doi.org/10.1515/revneuro-2016-0039
• Gracheva, E. O., y Bagriantsev, S. N. (2015). Evolutionary adaptation to thermosensation. Current Opinion in Neurobiology, 34, 67-73. https://doi.org/10.1016/j.conb.2015.01.021
• Green, B. G., Dalton, P., Cowart, B., Shaffer, G., Rankin, K., y Higgins, J. (1996). Evaluating the ‘Labeled Magnitude Scale’ for Measuring Sensations of Taste and Smell. Chemical Senses, 21(3), 323-334. https://doi.org/10.1093/chemse/21.3.323
• Green, B. G., Shaffer, G. S., y Gilmore, M. M. (1993). Derivation and evaluation of a semantic scale of oral sensation magnitude with apparent ratio properties. Chemical Senses, 18(6), 683-702. https://doi.org/10.1093/chemse/18.6.683
• Ho, H. N. (2018). Material recognition based on thermal cues: Mechanisms and applications. Temperature, 5(1), 36-55. https://doi.org/10.1080/23328940.2017.1372042
• Kenshalo, D. R., Holmes, C. E., y Wood, P. B. (1968). Warm and cool thresholds as a function of rate of stimulus temperature change. Perception & Psychophysics, 3(2), 81-84. https://doi.org/10.3758/BF03212769
• Kubricht, J. R., Holyoak, K. J., y Lu, H. (2017). Intuitive physics: Current research and controversies. Trends in Cognitive Sciences, 21(10), 749-759. https://doi.org/10.1016/j.tics.2017.06.002
• Lawless, H. T., y Heymann, H. (2010). Sensory Evaluation of Food: Principles and Practices. Springer New York. https://doi.org/10.1007/978-1-4419-6488-5
• Liao, M., Cao, E., Julius, D., y Cheng, Y. (2013). Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature, 504(7478), 107-112. https://doi.org/10.1038/nature12822
• Lv, Y.-G., y Liu, J. (2007). Effect of transient temperature on thermoreceptor response and thermal sensation. Building and Environment, 42(2), 656-664. https://doi.org/10.1016/j.buildenv.2005.10.030
• McCloskey, M. (1983). Intuitive physics. Scientific American, 248(4), 122-131.
• Myers, D. G., y Sigaloff, P. (2006). Psicología (7a ed). Editorial Médica Panamericana.
• Osborne, R., y Freyberg, P. (1985). Learning in science: The implications of children’s science (1.a ed.). Heinemann.
• Patapoutian, A., Peier, A. M., Story, G. M., y Viswanath, V. (2003). ThermoTRP channels and beyond: Mechanisms of temperature sensation. Nature Reviews Neuroscience, 4(7), 529-539. https://doi.org/10.1038/nrn1141
• Sarlani, E., Farooq, N., y Greenspan, J. D. (2003). Gender and laterality differences in thermosensation throughout the perceptible range. Pain, 106(1), 9-18. https://doi.org/10.1016/S0304-3959(03)00211-2
• Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45-69. https://doi.org/10.1016/0959-4752(94)90018-3
• Wandersee, J. H., Mintzes, J. J., y Novak, D. (1994). Research on alternative conceptions in science. En E. D. L. Gabel (Ed.), Handbook of research on science teaching and learning (1.a, pp. 177-210). Macmillan.
• Wenning, C. J. (2008). Dealing more effectively with alternative conceptions in science. Journal of Physics Teacher Education Online, 5, 11-19. https://www.semanticscholar.org/paper/Dealing-more-effectively-with-alternative-in-Wenning/5e4a851c307f95031de9fdb6b64afc5d6f39a7b7
• Wheatley, G. H. (1991). Constructivist perspectives on science and mathematics learning. Science Education, 75(1), 9-21. https://doi.org/10.1002/sce.3730750103
• Wiser, M., y Amin, T. (2001). Is heat hot?” Inducing conceptual change by integrating everyday and scientific perspectives on thermal phenomena. Learning and Instruction, 11(4-5), 331-355. https://doi.org/10.1016/s0959-4752(00)00036-0













