Publication: Zwitterionic ceramics for biomedical applications
Loading...
Official URL
Full text at PDC
Publication Date
2016-08
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
Bioceramics for bone tissue regeneration, local drug delivery and nanomedicine, are receiving growing attention by the biomaterials scientific community. The design of bioceramics with improved surface properties able to overcome clinical issues is a great scientific challenge. Zwitterionization of surfaces has arisen as a powerful alternative in the design of biocompatible bioceramics capable to inhibit bacterial and non-specific protein adsorption, which opens up new insights into the biomedical applications of these materials. This manuscript reviews the different approaches reported up to date for the synthesis and characterization of zwitterionic bioceramics with potential clinical applications.
Statement of Significance
Zwitterionic bioceramics are receiving growing attention by the biomaterials scientific community due to their great potential in bone tissue regeneration, local drug delivery and nanomedicines. Herein, the different strategies developed so far to synthesize and characterize zwitterionic bioceramics with potential clinical applications are summarized. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Description
RESEARCHER ID M-3378-2014 (María Vallet Regí)
ORCID 0000-0002-6104-4889 (María Vallet Regí)
UCM subjects
Unesco subjects
Keywords
Citation
[1] M. Vallet-Regí, Bio-ceramics with Clinical Applications, John Wiley & Sons Ltd,
Chichester, United Kingdom, 2014.
[2] K. Anselme, P. Davidson, A.M. Popa, M. Giazzon, M. Liley, L. Ploux, The
interaction of cells and bacteria with surfaces structured at the nanometre
scale, Acta Biomater. 6 (2010) 3824–3846.
[3] D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage,
Biomaterials 21 (2000) 2529–2543.
[4] B.Y.S. Kim, J.T. Rutka, W.C.W. Chan, Nanomedicine, N. Engl. J. Med. 363 (2010)
2434–2443.
[5] J. Shi, A.R. Votruba, O.C. Farokhzad, R. Langer, Nanotechnology in drug delivery
and tissue engineering: from discovery to applications, Nano Lett. 10 (2010)
3223–3230.
[6] J.A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia,
Nanomaterials: applications in cancer imaging and therapy, Adv. Mater. 23
(2011) H18–H40.
[7] D. Davies, Understanding biofilm resistance to antibacterial agents, Nat. Rev.
Drug Discov. 2 (2003) 114–122.
[8] J.V. Jokerst, T. Lobovkina, R.N. Zare, S.S. Gambhir, Nanoparticle PEGylation for
imaging and therapy, Nanomedicine-UK 6 (2011) 715–728.
[9] S. Chen, L. Li, C. Zhao, J. Zheng, Surface hydration: Principles and applications
toward low-fouling/nonfouling biomaterials, Polymer 51 (2010) 5283–5293.
[10] A.G. Gristina, Biomaterial-centered infection: microbial adhesion versus tissue
integration, Science 237 (1987) 1588–1595.
[11] S.E. D’Souza, M.H. Ginsberg, E.F. Plow, Arginyl-glycyl-aspartic acid (RGD): a
cell adhesion motif, Trends Biochem. Sci. 16 (1991) 246–250.
[12] K. Anselme, Osteoblast adhesion on biomaterials, Biomaterials 21 (2000) 667–
681.
[13] S. Srivastava, P.S. Srivastava, Understanding Bacteria, Kluwer Academic,
Dordrecht, 2003.
[14] L. Ploux, A. Ponche, K. Anselme, Bacteria/material interfaces: role of the
material and cell wall properties, J. Adhes. Sci. Technol. 24 (2010) 2165–2201.
[15] J. Bohmler, A. Ponche, K. Anselme, L. Ploux, Self-assembled molecular
platforms for bacteria/material biointerface studies: Importance to control
functional group accessibility, ACS Appl. Mater. Interfaces 5 (2013) 10478–
10488.
[16] I. Izquierdo-Barba, S. Sánchez-Salcedo, M. Colilla, M.J. Feito, C. Ramírez-
Santillán, M.T. Portolés, M. Vallet-Regí, Inhibition of bacterial adhesion on
biocompatible zwitterionic SBA-15 mesoporous materials, Acta Biomater. 7
(2011) 2977–2985.
[17] S. Sánchez-Salcedo, M. Colilla, I. Izquierdo-Barba, M. Vallet-Regí, Design and
preparation of biocompatible zwitterionic hydroxyapatite, J. Mater. Chem. B 1
(2013) 1595–1606.
[18] I. Izquierdo-Barba, J.M. García-Martín, R. Álvarez, A. Palmero, J. Esteban, C.
Pérez-Jorge, D. Arcos, M. Vallet-Regí, Nanocolumnar coatings with selective
behavior towards osteoblast and Staphylococcus aureus proliferation, Acta
Biomater. 15 (2015) 20–28.
[19] N. Mitik-Dineva, J. Wang, R.C. Mocanasu, P.R. Stoddart, R.J. Crawford, E.P.
Ivanova, Impact of nano-topography on bacterial attachment, Biotechnol. J. 3
(2008). 536-344.
[20] D. Walczyk, F.B. Bombelli, M.P. Monopoli, I. Lynch, K.A. Dawson, What the cell
‘‘sees” in bionanoscience, J. Am. Chem. Soc. 132 (2010) 5761–5768.
[21] M. Lundqvist, J. Stigler, T. Cedervall, T. Berggard, M.B. Flanagan, I. Lynch, G. Elia,
K. Dawson, The evolution of the protein corona around nanoparticles: a test
study, ACS Nano 5 (2011) 7503–7509.
[22] D.E. Owens, N.A. Peppas, Opsonization, biodistribution, and pharmacokinetics
of polymeric nanoparticles, Int. J. Pharm. 307 (2006) 93–102.
[23] A. Chow, B. Brown, M. Merad, Studying the mononuclear phagocyte system in
the molecular age, Nat. Rev. Immunol. 11 (2011) 788–798.
[24] J.E. Rosen, F.X. Gu, Surface functionalization of silica nanoparticles with
cysteine: a low-fouling zwitterionic surface, Langmuir 27 (2011) 10507–
10513.
[25] Z.G. Estephan, J.A. Jaber, J.B. Schlenoff, Zwitterion-stabilized silica
nanoparticles: toward nonstick nano, Langmuir 26 (2010) 16884–16889.
[26] Z.G. Estephan, P.S. Schlenoff, J.B. Schlenoff, Zwitteration as an alternative to
PEGylation, Langmuir 27 (2011) 6794–6800.
[27] Z.G. Estephan, H.H. Hariri, J.B. Schlenoff, One-pot, exchange-free, roomtemperature
synthesis of sub-10 nm aqueous, noninteracting, and stable
zwitterated iron oxide nanoparticles, Langmuir 29 (2013) 2572–2579.
[28] H. Wei, N.I.J. Lee, H.-S. Han, J.M. Cordero, W. Liu, M.G. Bawendi, Compact
zwitterion-coated iron oxide nanoparticles for biological applications, Nano
Lett. 12 (2012) 22–25.
[29] H. Wei, O.T. Bruns, O. Chen, M.G. Bawendi, Compact zwitterion-coated iron
oxide nanoparticles for in vitro and in vivo imaging, Integr. Biol. 5 (2013) 108–
114.
[30] Z. Zhou, L. Wang, X. Chi, J. Bao, L. Yang, W. Zhao, Z. Chen, X. Wang, X. Chen, J.
Gao, Engineered iron-oxide-based nanoparticles as enhanced T1 contrast
agents for efficient tumor imaging, ACS Nano 7 (2013) 3287–3296.
[31] M. Colilla, I. Izquierdo-Barba, S. Sánchez-Salcedo, J.L.G. Fierro, J.L. Hueso, M.
Vallet-Regí, Synthesis and characterization of zwitterionic SBA-15
nanostructured materials, Chem. Mater. 23 (2010) 6459–6466.
[32] M. Colilla, M. Martínez-Carmona, S. Sánchez-Salcedo, M.L. Ruiz-González, J.M.
González-Calbet, M. Vallet-Regí, A novel zwitterionic bioceramic
[33] G. Cheng, Z. Zhang, S. Chen, James.D. Bryers, S. Jiang, Inhibition of bacterial
adhesion and biofilm formation on zwitterionic surfaces, Biomaterials 28
(2007) 4192–4199.
[34] G. Cheng, G.H. Xue, Z. Zhang, S. Chen, S. Jiang, A switchable biocompatible
polymer surface with self-sterilizing and nonfouling capabilities, Angew.
Chem. Int. Ed. 47 (2008) 8831–8834.
[35] G. Cheng, G. Li, H. Xue, S. Chena, J.D. Bryers, S. Jiang, Zwitterionic
carboxybetaine polymer surfaces and their resistance to long-term biofilm
formation, Biomaterials 30 (2009) 5234–5240.
[36] S. Jiang, Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable
zwitterionic materials and their derivatives for biological applications, Adv.
Mater. 22 (2010) 920–932.
[37] R. Lalani, L. Liu, Electrospun zwitterionic poly(sulfobetaine methacrylate) for
nonadherent, superabsorbent, and antimicrobial wound dressing applications,
Biomacromolecules 13 (2012) 1853–1863.
[38] Z. Zhang, S. Chen, Y. Chang, S. Jiang, Surface grafted sulfobetaine polymers via
atom transfer radical polymerization as superlow fouling coatings, J. Phys.
Chem. B 110 (2006) 10799–10804.
[39] Z. Dong, J. Mao, M. Yang, D. Wang, S. Bo, X. Ji, Phase behavior of poly
(sulfobetaine methacrylate)-grafted silica nanoparticles and their stability in
protein solutions, Langmuir 27 (2011) 15282–15291.
[40] H. Suzuki, M. Murou, H. Kitano, K. Ohno, Y. Saruwatari, Silica particles coated
with zwitterionic polymer brush: formation of colloidal crystals and antibiofouling
properties in aqueous medium, Colloids Surf. B 84 (2011) 111–116.
[41] G. Jia, Z. Cao, H. Xue, Y. Xu, S. Jiang, Novel zwitterionic-polymer-coated silica
nanoparticles, Langmuir 25 (2009) 3196–3199.
[42] J.T. Sun, Z.Q. Yu, C.Y. Hong, C.Y. Pan, Biocompatible zwitterionic sulfobetaine
copolymer-coated mesoporous silica nanoparticles for temperatureresponsive
drug release, Macromol. Rapid Commun. 33 (2012). 811-808.
[43] L. Zhang, H. Xue, C. Gao, L. Carr, J. Wang, B. Chu, S. Jiang, Imaging and cell
targeting characteristics of magnetic nanoparticles modified by a
functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-lalanine
linkages, Biomaterials 31 (2010) 6582–6588.
[44] W. Xiao, J. Lin, M. Li, Y. Ma, Y. Chen, C. Zhang, D. Li, H. Gu, Prolonged in vivo
circulation time by zwitterionic modification of magnetite nanoparticles for
blood pool contrast agents, Contrast Media Mol. Imaging 7 (2012) 320–327.
[45] A.T. Nguyen, J. Baggerman, J.M. Paulusse, C.J. van Rijn, H. Zuilhof, Stable
protein-repellent zwitterionic polymer brushes grafted from silicon nitride,
Langmuir 27 (2011) 2587–2594.
[46] J. Kuang, P.B. Messersmith, Universal surface-initiated polymerization of
antifouling zwitterionic brushes using a mussel-mimetic peptide initiator,
Langmuir 28 (2012) 7258–7266.
[47] M. Vallet-Regí, A. Rámila, R.P. del Real, J. Pérez-Pariente, A new property of
MCM-41: drug delivery system, Chem. Mater. 13 (2001) 308–311.
[48] M. Vallet-Regí, Ordered mesoporous materials in the context of drug delivery
systems and bone tissue engineering, Chem. Eur. J. 12 (2006) 5934–5943.
[49] M. Vallet-Regí, M. Colilla, B. González, Medical applications of organicinorganic
hybrid materials within the field of silica-based bioceramics,
Chem. Soc. Rev. 40 (2011) 596–607.
[50] M. Vallet-Regí, I. Izquierdo-Barba, M. Colilla, Structure and functionalization of
mesoporous bioceramics for bone tissue regeneration and local drug delivery,
Phil. Trans. Royal Soc. Chem. A: Mathem. Phys. Eng. Sci. 370 (2012) 1400–
1421.
[51] M. Vallet-Regí, F. Balas, D. Arcos, Mesoporous materials for drug delivery,
Angew. Chem. Int. Ed. 46 (2007) 7548–7558.
[52] T.J. Kinnari, J. Esteban, E. Gómez-Barrena, N. Martin-de-Hijas, O. Sánchez-
Muñoz, S. Sánchez-Salcedo, M. Colilla, M. Vallet-Regí, E. Gómez-Barrena,
Influence of surface porosity and pH on bacterial adherence to hydroxyapatite
and biphasic calcium phosphate bioceramics, J. Med. Microbiol. 58 (2009)
132–137.
[53] M. Vallet-Regí, D. Arcos, Nanoceramics in clinical use: from materials to
applications, 2nd Ed., Royal Society of Chemistry, Cambridge, United Kingdom,
2015.
[54] S.V. Dorozhkin, Bioceramics of calcium orthophosphates, Biomaterials 31
(2010) 1465–1485.
[55] S. Lanone, J. Boczkowski, Biomedical applications and potential health risks of
nanomaterials: molecular mechanisms, Curr. Mol. Med. 6 (2006) 651–663.
[56] E. Roduner, Size matters: why nanomaterials are different, Chem. Soc. Rev. 35
(2006) 583–592.
[57] A. Fernandez-Fernandez, R. Manchanda, A. McGoron, Theranostic applications
of nanomaterials in cancer: drug delivery, image-guided therapy, and
multifunctional platforms, Appl. Biochem. Biotechnol. 165 (2011) 1628–1651.
[58] A. Albanese, P.S. Tang, W.C.W. Chan, The effect of nanoparticle size, shape, and
surface chemistry on biological systems, Ann. Rev. Biomed. Eng. 14 (2012) 1–
16.
[59] A. Liberman, N. Mendez, W.C. Trogler, A.C. Kummel, Synthesis and surface
functionalization of silica nanoparticles for nanomedicines, Surf. Sci. Rep. 69
(2014) 132–158.
[60] L. Tang, J. Cheng, Nonporous silica nanoparticles for nanomedicine application,
Nano Today 8 (2013) 290–312.
[61] A. Baeza, M. Colilla, M. Vallet-Regí, Advances in mesoporous silica
nanoparticles for targeted stimuli-responsive drug delivery, Expert Opin.
Drug Deliv. 12 (2014) 319–337.
[62] Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang, S.
Wang, Mesoporous silica nanoparticles in drug delivery and biomedical
applications, Nanomed. Nanotech. Biol. Med. 11 (2015) 313–327.
[63] A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide
nanoparticles for biomedical applications, Biomaterials 26 (2005) 3995–4021.
[64] S. Laurent, J.-L. Bridot, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles
for biomedical applications, Future Med. Chem. 2 (2010) 427–449.
[65] J.P.M. Almeida, A.L. Chen, A. Foster, R. Drezek, In vivo biodistribution of
nanoparticles, Nanomedicine 6 (2011) 815–835.
[66] S.M. Moghimi, A.C. Hunter, T.L. Andresen, Factors controlling nanoparticle
pharmacokinetics: an integrated analysis and perspective, Annu. Rev.
Pharmacol. Toxicol. 52 (2012) 481–503.
[67] A.S. Karakoti, S. Das, S. Thevuthasan, S. Seal, PEGylated inorganic nanoparticles,
Angew. Chem., Int. Ed. 50 (2011) 1980–1994.
[68] M. Colilla, B. González, M. Vallet-Regí, Mesoporous silica nanoparticles for the
design of smart delivery nanodevices, Biomater. Sci. 1 (2013) 114–134.
[69] F. Hoffmann, M. Cornelius, J. Morell, M. Froeba, Silica-based mesoporous
organic-inorganic hybrid materials, Angew. Chem., Int. Ed. 45 (2006) 3216–
3251.
[70] R. Bagwe, L. Hilliard, W. Tan, Surface modification of silica nanoparticles to
reduce aggregation and non-specific binding, Langmuir 22 (2006) 4357–4362.
[71] L. Wang, W. Zhao, W. Tan, Bioconjugated silica nanoparticles: development
and applications, Nano Res. 1 (2008) 99–115.
[72] M.G. Harisinghani, J. Barentsz, P.F. Hahn, W.M. Deserno, S. Tabatabaei, C.H. van
de Kaa, J. de la Rosette, R. Weissleder, N. Engl, Noninvasive detection of
clinically occult lymph-node metastases in prostate cancer, J. Med. 348 (2003)
2491–2499.
[73] T. Hyeon, S.S. Lee, J. Park, Y. Chung, H. Bin, Na, Synthesis of highly crystalline
and monodisperse maghemite nanocrystallites and size–selection process, J.
Am. Chem. Soc. 123 (2001) 12798–12801.
[74] N. Lee, T. Hyeon, Designed synthesis of uniformly sized iron oxides
nanoparticles for efficient magnetic resonance imaging contrast agents,
Chem. Soc. Rev. 41 (2012) 2575–2589.
[75] D. Kim, M. Chae, H.J. Joo, I. Jeong, J.H. Cho, C. Lee, Facile preparation of
zwitterion-stabilized superparamagnetic iron oxide nanoparticles (ZSPIONs)
as an MR contrast agent for in vivo applications, Langmuir 28 (2012) 9634–
9639.