Zwitterionic ceramics for biomedical applications

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Bioceramics for bone tissue regeneration, local drug delivery and nanomedicine, are receiving growing attention by the biomaterials scientific community. The design of bioceramics with improved surface properties able to overcome clinical issues is a great scientific challenge. Zwitterionization of surfaces has arisen as a powerful alternative in the design of biocompatible bioceramics capable to inhibit bacterial and non-specific protein adsorption, which opens up new insights into the biomedical applications of these materials. This manuscript reviews the different approaches reported up to date for the synthesis and characterization of zwitterionic bioceramics with potential clinical applications. Statement of Significance Zwitterionic bioceramics are receiving growing attention by the biomaterials scientific community due to their great potential in bone tissue regeneration, local drug delivery and nanomedicines. Herein, the different strategies developed so far to synthesize and characterize zwitterionic bioceramics with potential clinical applications are summarized. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
RESEARCHER ID M-3378-2014 (María Vallet Regí) ORCID 0000-0002-6104-4889 (María Vallet Regí)
[1] M. Vallet-Regí, Bio-ceramics with Clinical Applications, John Wiley & Sons Ltd, Chichester, United Kingdom, 2014. [2] K. Anselme, P. Davidson, A.M. Popa, M. Giazzon, M. Liley, L. Ploux, The interaction of cells and bacteria with surfaces structured at the nanometre scale, Acta Biomater. 6 (2010) 3824–3846. [3] D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials 21 (2000) 2529–2543. [4] B.Y.S. Kim, J.T. Rutka, W.C.W. Chan, Nanomedicine, N. Engl. J. Med. 363 (2010) 2434–2443. [5] J. Shi, A.R. Votruba, O.C. Farokhzad, R. Langer, Nanotechnology in drug delivery and tissue engineering: from discovery to applications, Nano Lett. 10 (2010) 3223–3230. [6] J.A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia, Nanomaterials: applications in cancer imaging and therapy, Adv. Mater. 23 (2011) H18–H40. [7] D. Davies, Understanding biofilm resistance to antibacterial agents, Nat. Rev. Drug Discov. 2 (2003) 114–122. [8] J.V. Jokerst, T. Lobovkina, R.N. Zare, S.S. Gambhir, Nanoparticle PEGylation for imaging and therapy, Nanomedicine-UK 6 (2011) 715–728. [9] S. Chen, L. Li, C. Zhao, J. Zheng, Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials, Polymer 51 (2010) 5283–5293. [10] A.G. Gristina, Biomaterial-centered infection: microbial adhesion versus tissue integration, Science 237 (1987) 1588–1595. [11] S.E. D’Souza, M.H. Ginsberg, E.F. Plow, Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif, Trends Biochem. Sci. 16 (1991) 246–250. [12] K. Anselme, Osteoblast adhesion on biomaterials, Biomaterials 21 (2000) 667– 681. [13] S. Srivastava, P.S. Srivastava, Understanding Bacteria, Kluwer Academic, Dordrecht, 2003. [14] L. Ploux, A. Ponche, K. Anselme, Bacteria/material interfaces: role of the material and cell wall properties, J. Adhes. Sci. Technol. 24 (2010) 2165–2201. [15] J. Bohmler, A. Ponche, K. Anselme, L. Ploux, Self-assembled molecular platforms for bacteria/material biointerface studies: Importance to control functional group accessibility, ACS Appl. Mater. Interfaces 5 (2013) 10478– 10488. [16] I. Izquierdo-Barba, S. Sánchez-Salcedo, M. Colilla, M.J. Feito, C. Ramírez- Santillán, M.T. Portolés, M. Vallet-Regí, Inhibition of bacterial adhesion on biocompatible zwitterionic SBA-15 mesoporous materials, Acta Biomater. 7 (2011) 2977–2985. [17] S. Sánchez-Salcedo, M. Colilla, I. Izquierdo-Barba, M. Vallet-Regí, Design and preparation of biocompatible zwitterionic hydroxyapatite, J. Mater. Chem. B 1 (2013) 1595–1606. [18] I. Izquierdo-Barba, J.M. García-Martín, R. Álvarez, A. Palmero, J. Esteban, C. Pérez-Jorge, D. Arcos, M. Vallet-Regí, Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation, Acta Biomater. 15 (2015) 20–28. [19] N. Mitik-Dineva, J. Wang, R.C. Mocanasu, P.R. Stoddart, R.J. Crawford, E.P. Ivanova, Impact of nano-topography on bacterial attachment, Biotechnol. J. 3 (2008). 536-344. [20] D. Walczyk, F.B. Bombelli, M.P. Monopoli, I. Lynch, K.A. Dawson, What the cell ‘‘sees” in bionanoscience, J. Am. Chem. Soc. 132 (2010) 5761–5768. [21] M. Lundqvist, J. Stigler, T. Cedervall, T. Berggard, M.B. Flanagan, I. Lynch, G. Elia, K. Dawson, The evolution of the protein corona around nanoparticles: a test study, ACS Nano 5 (2011) 7503–7509. [22] D.E. Owens, N.A. Peppas, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles, Int. J. Pharm. 307 (2006) 93–102. [23] A. Chow, B. Brown, M. Merad, Studying the mononuclear phagocyte system in the molecular age, Nat. Rev. Immunol. 11 (2011) 788–798. [24] J.E. Rosen, F.X. Gu, Surface functionalization of silica nanoparticles with cysteine: a low-fouling zwitterionic surface, Langmuir 27 (2011) 10507– 10513. [25] Z.G. Estephan, J.A. Jaber, J.B. Schlenoff, Zwitterion-stabilized silica nanoparticles: toward nonstick nano, Langmuir 26 (2010) 16884–16889. [26] Z.G. Estephan, P.S. Schlenoff, J.B. Schlenoff, Zwitteration as an alternative to PEGylation, Langmuir 27 (2011) 6794–6800. [27] Z.G. Estephan, H.H. Hariri, J.B. Schlenoff, One-pot, exchange-free, roomtemperature synthesis of sub-10 nm aqueous, noninteracting, and stable zwitterated iron oxide nanoparticles, Langmuir 29 (2013) 2572–2579. [28] H. Wei, N.I.J. Lee, H.-S. Han, J.M. Cordero, W. Liu, M.G. Bawendi, Compact zwitterion-coated iron oxide nanoparticles for biological applications, Nano Lett. 12 (2012) 22–25. [29] H. Wei, O.T. Bruns, O. Chen, M.G. Bawendi, Compact zwitterion-coated iron oxide nanoparticles for in vitro and in vivo imaging, Integr. Biol. 5 (2013) 108– 114. [30] Z. Zhou, L. Wang, X. Chi, J. Bao, L. Yang, W. Zhao, Z. Chen, X. Wang, X. Chen, J. Gao, Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging, ACS Nano 7 (2013) 3287–3296. [31] M. Colilla, I. Izquierdo-Barba, S. Sánchez-Salcedo, J.L.G. Fierro, J.L. Hueso, M. Vallet-Regí, Synthesis and characterization of zwitterionic SBA-15 nanostructured materials, Chem. Mater. 23 (2010) 6459–6466. [32] M. Colilla, M. Martínez-Carmona, S. Sánchez-Salcedo, M.L. Ruiz-González, J.M. González-Calbet, M. Vallet-Regí, A novel zwitterionic bioceramic [33] G. Cheng, Z. Zhang, S. Chen, James.D. Bryers, S. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces, Biomaterials 28 (2007) 4192–4199. [34] G. Cheng, G.H. Xue, Z. Zhang, S. Chen, S. Jiang, A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities, Angew. Chem. Int. Ed. 47 (2008) 8831–8834. [35] G. Cheng, G. Li, H. Xue, S. Chena, J.D. Bryers, S. Jiang, Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation, Biomaterials 30 (2009) 5234–5240. [36] S. Jiang, Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications, Adv. Mater. 22 (2010) 920–932. [37] R. Lalani, L. Liu, Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications, Biomacromolecules 13 (2012) 1853–1863. [38] Z. Zhang, S. Chen, Y. Chang, S. Jiang, Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings, J. Phys. Chem. B 110 (2006) 10799–10804. [39] Z. Dong, J. Mao, M. Yang, D. Wang, S. Bo, X. Ji, Phase behavior of poly (sulfobetaine methacrylate)-grafted silica nanoparticles and their stability in protein solutions, Langmuir 27 (2011) 15282–15291. [40] H. Suzuki, M. Murou, H. Kitano, K. Ohno, Y. Saruwatari, Silica particles coated with zwitterionic polymer brush: formation of colloidal crystals and antibiofouling properties in aqueous medium, Colloids Surf. B 84 (2011) 111–116. [41] G. Jia, Z. Cao, H. Xue, Y. Xu, S. Jiang, Novel zwitterionic-polymer-coated silica nanoparticles, Langmuir 25 (2009) 3196–3199. [42] J.T. Sun, Z.Q. Yu, C.Y. Hong, C.Y. Pan, Biocompatible zwitterionic sulfobetaine copolymer-coated mesoporous silica nanoparticles for temperatureresponsive drug release, Macromol. Rapid Commun. 33 (2012). 811-808. [43] L. Zhang, H. Xue, C. Gao, L. Carr, J. Wang, B. Chu, S. Jiang, Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-lalanine linkages, Biomaterials 31 (2010) 6582–6588. [44] W. Xiao, J. Lin, M. Li, Y. Ma, Y. Chen, C. Zhang, D. Li, H. Gu, Prolonged in vivo circulation time by zwitterionic modification of magnetite nanoparticles for blood pool contrast agents, Contrast Media Mol. Imaging 7 (2012) 320–327. [45] A.T. Nguyen, J. Baggerman, J.M. Paulusse, C.J. van Rijn, H. Zuilhof, Stable protein-repellent zwitterionic polymer brushes grafted from silicon nitride, Langmuir 27 (2011) 2587–2594. [46] J. Kuang, P.B. Messersmith, Universal surface-initiated polymerization of antifouling zwitterionic brushes using a mussel-mimetic peptide initiator, Langmuir 28 (2012) 7258–7266. [47] M. Vallet-Regí, A. Rámila, R.P. del Real, J. Pérez-Pariente, A new property of MCM-41: drug delivery system, Chem. Mater. 13 (2001) 308–311. [48] M. Vallet-Regí, Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering, Chem. Eur. J. 12 (2006) 5934–5943. [49] M. Vallet-Regí, M. Colilla, B. González, Medical applications of organicinorganic hybrid materials within the field of silica-based bioceramics, Chem. Soc. Rev. 40 (2011) 596–607. [50] M. Vallet-Regí, I. Izquierdo-Barba, M. Colilla, Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery, Phil. Trans. Royal Soc. Chem. A: Mathem. Phys. Eng. Sci. 370 (2012) 1400– 1421. [51] M. Vallet-Regí, F. Balas, D. Arcos, Mesoporous materials for drug delivery, Angew. Chem. Int. Ed. 46 (2007) 7548–7558. [52] T.J. Kinnari, J. Esteban, E. Gómez-Barrena, N. Martin-de-Hijas, O. Sánchez- Muñoz, S. Sánchez-Salcedo, M. Colilla, M. Vallet-Regí, E. Gómez-Barrena, Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics, J. Med. Microbiol. 58 (2009) 132–137. [53] M. Vallet-Regí, D. Arcos, Nanoceramics in clinical use: from materials to applications, 2nd Ed., Royal Society of Chemistry, Cambridge, United Kingdom, 2015. [54] S.V. Dorozhkin, Bioceramics of calcium orthophosphates, Biomaterials 31 (2010) 1465–1485. [55] S. Lanone, J. Boczkowski, Biomedical applications and potential health risks of nanomaterials: molecular mechanisms, Curr. Mol. Med. 6 (2006) 651–663. [56] E. Roduner, Size matters: why nanomaterials are different, Chem. Soc. Rev. 35 (2006) 583–592. [57] A. Fernandez-Fernandez, R. Manchanda, A. McGoron, Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms, Appl. Biochem. Biotechnol. 165 (2011) 1628–1651. [58] A. Albanese, P.S. Tang, W.C.W. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems, Ann. Rev. Biomed. Eng. 14 (2012) 1– 16. [59] A. Liberman, N. Mendez, W.C. Trogler, A.C. Kummel, Synthesis and surface functionalization of silica nanoparticles for nanomedicines, Surf. Sci. Rep. 69 (2014) 132–158. [60] L. Tang, J. Cheng, Nonporous silica nanoparticles for nanomedicine application, Nano Today 8 (2013) 290–312. [61] A. Baeza, M. Colilla, M. Vallet-Regí, Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery, Expert Opin. Drug Deliv. 12 (2014) 319–337. [62] Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang, S. Wang, Mesoporous silica nanoparticles in drug delivery and biomedical applications, Nanomed. Nanotech. Biol. Med. 11 (2015) 313–327. [63] A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26 (2005) 3995–4021. [64] S. Laurent, J.-L. Bridot, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles for biomedical applications, Future Med. Chem. 2 (2010) 427–449. [65] J.P.M. Almeida, A.L. Chen, A. Foster, R. Drezek, In vivo biodistribution of nanoparticles, Nanomedicine 6 (2011) 815–835. [66] S.M. Moghimi, A.C. Hunter, T.L. Andresen, Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective, Annu. Rev. Pharmacol. Toxicol. 52 (2012) 481–503. [67] A.S. Karakoti, S. Das, S. Thevuthasan, S. Seal, PEGylated inorganic nanoparticles, Angew. Chem., Int. Ed. 50 (2011) 1980–1994. [68] M. Colilla, B. González, M. Vallet-Regí, Mesoporous silica nanoparticles for the design of smart delivery nanodevices, Biomater. Sci. 1 (2013) 114–134. [69] F. Hoffmann, M. Cornelius, J. Morell, M. Froeba, Silica-based mesoporous organic-inorganic hybrid materials, Angew. Chem., Int. Ed. 45 (2006) 3216– 3251. [70] R. Bagwe, L. Hilliard, W. Tan, Surface modification of silica nanoparticles to reduce aggregation and non-specific binding, Langmuir 22 (2006) 4357–4362. [71] L. Wang, W. Zhao, W. Tan, Bioconjugated silica nanoparticles: development and applications, Nano Res. 1 (2008) 99–115. [72] M.G. Harisinghani, J. Barentsz, P.F. Hahn, W.M. Deserno, S. Tabatabaei, C.H. van de Kaa, J. de la Rosette, R. Weissleder, N. Engl, Noninvasive detection of clinically occult lymph-node metastases in prostate cancer, J. Med. 348 (2003) 2491–2499. [73] T. Hyeon, S.S. Lee, J. Park, Y. Chung, H. Bin, Na, Synthesis of highly crystalline and monodisperse maghemite nanocrystallites and size–selection process, J. Am. Chem. Soc. 123 (2001) 12798–12801. [74] N. Lee, T. Hyeon, Designed synthesis of uniformly sized iron oxides nanoparticles for efficient magnetic resonance imaging contrast agents, Chem. Soc. Rev. 41 (2012) 2575–2589. [75] D. Kim, M. Chae, H.J. Joo, I. Jeong, J.H. Cho, C. Lee, Facile preparation of zwitterion-stabilized superparamagnetic iron oxide nanoparticles (ZSPIONs) as an MR contrast agent for in vivo applications, Langmuir 28 (2012) 9634– 9639.