Failure of the strong maximum principle for linear elliptic with singular convection of non-negative divergence
Loading...
Download
Official URL
Full text at PDC
Publication date
2022
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
In this paper we study existence, uniqueness, and integrability of solutions to the Dirichlet problem −div(M(x)∇u)=−div(E(x)u)+f in a bounded domain of RN with N≥3. We are particularly interested in singular E with divE≥0. We start by recalling known existence results when |E|∈LN that do not rely on the sign of divE. Then, under the assumption that divE≥0 distributionally, we extend the existence theory to |E|∈L2. For the uniqueness, we prove a comparison principle in this setting. Lastly, we discuss the particular cases of E singular at one point as Ax/|x|2, or towards the boundary as divE∼dist(x,∂Ω)−2−α. In these cases the singularity of E leads to u vanishing to a certain order. In particular, this shows that the strong maximum principle fails in the presence of such singular drift terms E.