Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Failure of the strong maximum principle for linear elliptic with singular convection of non-negative divergence

dc.contributor.authorBoccardo, L.
dc.contributor.authorGómez Castro, David
dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.date.accessioned2023-06-22T12:31:20Z
dc.date.available2023-06-22T12:31:20Z
dc.date.issued2022-11-21
dc.description.abstractIn this paper we study existence, uniqueness, and integrability of solutions to the Dirichlet problem −div(M(x)∇u)=−div(E(x)u)+f in a bounded domain of RN with N≥3. We are particularly interested in singular E with divE≥0. We start by recalling known existence results when |E|∈LN that do not rely on the sign of divE. Then, under the assumption that divE≥0 distributionally, we extend the existence theory to |E|∈L2. For the uniqueness, we prove a comparison principle in this setting. Lastly, we discuss the particular cases of E singular at one point as Ax/|x|2, or towards the boundary as divE∼dist(x,∂Ω)−2−α. In these cases the singularity of E leads to u vanishing to a certain order. In particular, this shows that the strong maximum principle fails in the presence of such singular drift terms E.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipUniversidad Complutense de Madrid (UCM)
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/75823
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72748
dc.language.isoeng
dc.relation.projectIDNonlocal-CPD (883363)
dc.relation.projectIDPID2020-112517GB-I00
dc.relation.projectIDUCM (910480)
dc.rights.accessRightsopen access
dc.subject.cdu517.95
dc.subject.ucmEcuaciones diferenciales
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleFailure of the strong maximum principle for linear elliptic with singular convection of non-negative divergence
dc.typejournal article
dcterms.references[1] L. Boccardo. Some developments on Dirichlet problems with discontinuous coefficients. Bolletino dell Unione Matematica Italiana, 2(1):285–297, 2009. [2] L. Boccardo: Dirichlet problems with singular convection term and applications; J. Differential Equations 258 (2015), 2290-2314. [3] L. Boccardo: The impact of the zero order term in the study of Dirichlet problems with convection or drift terms. Revista Matemática Complutense https://doi.org/10.1007/s13163-022-00434-1 [4] L. Boccardo, T. Gallouët, Nonlinear elliptic equations with right hand side measures; Comm. Partial Differential Equations, 17 (1992), 641–655. [5] L. Boccardo and L. Orsina. Very singular solutions for linear Dirichlet problems with singular convection terms. Nonlinear Analysis, 2019. [6] L. Boccardo, L. Orsina, M.M. Porzio: Regularity results and asymptotic behavior for a noncoercive parabolic problem; J. Evol. Equ. 21 (2021), 2195-2211. [7] H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for ut − 2206u = g(u) revisited, Advances in Diff. Eq., 1 (1996), 73–90. [8] H. Brezis and W. Strauss, Semilinear second order elliptic equations in L1, J. Math.Soc. Japan 25 (1974), 831-844. [9] J.I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Pitman, London, 1985. [10] J.I. Díaz, On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via singular potentials: the multi-dimensional case. SeMA-Journal 74 3 (2017) 225-278 [11] J.I. Díaz, Correction to: On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via singular potentials: the multi-dimensional case. SeMA-Journal 75 (2018), no. 3, 563–568 [12] J. I. Díaz, D. Gómez-Castro, and J.-M. Rakotoson. Existence and uniqueness of solutions of Schrödinger type stationary equations with very singular potentials without prescribing boundary conditions and some applications. Differential Equations & Applications, 10(1):47–74, 2018. [13] J. I. Díaz, D. Gómez-Castro, J. M. Rakotoson, and R. Temam. Linear diffusion with singular absorption potential and/or unbounded convective flow: The weighted space approach. Discrete and Continuous Dynamical Systems, 38(2):509–546, 2018. [14] J. I. Díaz, D. Gómez-Castro, and J. L. Vázquez. The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach. Nonlinear Analysis, 177:325– 360, 2018. [15] D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977. [16] D. Gómez-Castro and J. L. Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems - A, 39(12):7113–7139, 2019. [17] L. Orsina and A. C. Ponce. Hopf potentials for Schroedinger operators, Anal PDE 11(8), 2015–2047 (2018). [18] G. Stampacchia: Le probléme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189-258.
dspace.entity.typePublication
relation.isAuthorOfPublicationfe4c14a6-9c7a-4ce9-a868-b42d84aada05
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscoveryfe4c14a6-9c7a-4ce9-a868-b42d84aada05

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
diazdiaz_failure.pdf
Size:
188.71 KB
Format:
Adobe Portable Document Format

Collections