Failure of the strong maximum principle for linear elliptic with singular convection of non-negative divergence
dc.contributor.author | Boccardo, L. | |
dc.contributor.author | Gómez Castro, David | |
dc.contributor.author | Díaz Díaz, Jesús Ildefonso | |
dc.date.accessioned | 2023-06-22T12:31:20Z | |
dc.date.available | 2023-06-22T12:31:20Z | |
dc.date.issued | 2022-11-21 | |
dc.description.abstract | In this paper we study existence, uniqueness, and integrability of solutions to the Dirichlet problem −div(M(x)∇u)=−div(E(x)u)+f in a bounded domain of RN with N≥3. We are particularly interested in singular E with divE≥0. We start by recalling known existence results when |E|∈LN that do not rely on the sign of divE. Then, under the assumption that divE≥0 distributionally, we extend the existence theory to |E|∈L2. For the uniqueness, we prove a comparison principle in this setting. Lastly, we discuss the particular cases of E singular at one point as Ax/|x|2, or towards the boundary as divE∼dist(x,∂Ω)−2−α. In these cases the singularity of E leads to u vanishing to a certain order. In particular, this shows that the strong maximum principle fails in the presence of such singular drift terms E. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Unión Europea. Horizonte 2020 | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Universidad Complutense de Madrid (UCM) | |
dc.description.status | unpub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/75823 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/72748 | |
dc.language.iso | eng | |
dc.relation.projectID | Nonlocal-CPD (883363) | |
dc.relation.projectID | PID2020-112517GB-I00 | |
dc.relation.projectID | UCM (910480) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.95 | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.ucm | Funciones (Matemáticas) | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Failure of the strong maximum principle for linear elliptic with singular convection of non-negative divergence | |
dc.type | journal article | |
dcterms.references | [1] L. Boccardo. Some developments on Dirichlet problems with discontinuous coefficients. Bolletino dell Unione Matematica Italiana, 2(1):285–297, 2009. [2] L. Boccardo: Dirichlet problems with singular convection term and applications; J. Differential Equations 258 (2015), 2290-2314. [3] L. Boccardo: The impact of the zero order term in the study of Dirichlet problems with convection or drift terms. Revista Matemática Complutense https://doi.org/10.1007/s13163-022-00434-1 [4] L. Boccardo, T. Gallouët, Nonlinear elliptic equations with right hand side measures; Comm. Partial Differential Equations, 17 (1992), 641–655. [5] L. Boccardo and L. Orsina. Very singular solutions for linear Dirichlet problems with singular convection terms. Nonlinear Analysis, 2019. [6] L. Boccardo, L. Orsina, M.M. Porzio: Regularity results and asymptotic behavior for a noncoercive parabolic problem; J. Evol. Equ. 21 (2021), 2195-2211. [7] H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for ut − 2206u = g(u) revisited, Advances in Diff. Eq., 1 (1996), 73–90. [8] H. Brezis and W. Strauss, Semilinear second order elliptic equations in L1, J. Math.Soc. Japan 25 (1974), 831-844. [9] J.I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Pitman, London, 1985. [10] J.I. Díaz, On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via singular potentials: the multi-dimensional case. SeMA-Journal 74 3 (2017) 225-278 [11] J.I. Díaz, Correction to: On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via singular potentials: the multi-dimensional case. SeMA-Journal 75 (2018), no. 3, 563–568 [12] J. I. Díaz, D. Gómez-Castro, and J.-M. Rakotoson. Existence and uniqueness of solutions of Schrödinger type stationary equations with very singular potentials without prescribing boundary conditions and some applications. Differential Equations & Applications, 10(1):47–74, 2018. [13] J. I. Díaz, D. Gómez-Castro, J. M. Rakotoson, and R. Temam. Linear diffusion with singular absorption potential and/or unbounded convective flow: The weighted space approach. Discrete and Continuous Dynamical Systems, 38(2):509–546, 2018. [14] J. I. Díaz, D. Gómez-Castro, and J. L. Vázquez. The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach. Nonlinear Analysis, 177:325– 360, 2018. [15] D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977. [16] D. Gómez-Castro and J. L. Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems - A, 39(12):7113–7139, 2019. [17] L. Orsina and A. C. Ponce. Hopf potentials for Schroedinger operators, Anal PDE 11(8), 2015–2047 (2018). [18] G. Stampacchia: Le probléme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189-258. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | fe4c14a6-9c7a-4ce9-a868-b42d84aada05 | |
relation.isAuthorOfPublication | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 | |
relation.isAuthorOfPublication.latestForDiscovery | fe4c14a6-9c7a-4ce9-a868-b42d84aada05 |
Download
Original bundle
1 - 1 of 1