Publication:
Annealing effects on the interface and insulator properties of plasma-deposited Al/SiOxNyHz/Si devices

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-02
Authors
Prado Millán, Álvaro del
San Andres Serrano, Enrique
Mártil de la Plaza, Ignacio
Kliefoth, K.
Füssel, W.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Iop Publishing Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We have studied and compared the effects of conventional annealing in a forming gas atmosphere (430 degreesC, 20 min) and rapid thermal annealing (RTA) in an inert Ar atmosphere (400-1000 degreesC, 30 s) on Al/SiOxNyHz/Si devices. The samples were deposited by the electron cyclotron resonance plasma method at low temperature (T = 200 degreesC). The devices were characterized by surface photovoltage measurements before applying contacts and by capacitance-voltage measurements. All the as-deposited samples containing N had positive flat-band voltage, which corresponds to negative charge in the insulator and/or in the interface states (Q(INS)). Additionally, trapping of positive charge is observed when measuring from inversion to accumulation after measuring from accumulation to inversion. This behaviour is tentatively attributed to the presence of defects related to N, such as the K centre (N-3=Siup arrow) or the N dangling bond (Si-2=Nup arrow), which may be present in a negatively charged state. For samples of SiO2 composition, with a negligible N content, Q(INS) is positive. High densities of interface states (D-it), above 10(12) eV(-1) cm(-2), are observed in the as-deposited samples. Both the annealing in a forming gas atmosphere and the RTA result in the change of the sign of Q(INS) from negative to positive and a decrease of its absolute value, as well as a decrease of D-it of about one order of magnitude. The trapping of positive charge is also greatly reduced. These improvements of the electrical properties are attributed to the passivation of defects by H present in the forming gas atmosphere or in the SiOxNyHz film itself in a non-bonded state. For RTA temperatures above 700 degreesC the properties of the devices degrade due to the release of H. The combination of RTA and annealing in a forming gas atmosphere results in the best properties.
Description
© 2004 IOP Publishing Ltd. The authors would like to thank B Steudel (Hahn-Meitner-Institut) for her inestimable help in the C–V measurements. C.A.I. de Implantación Iónica (UCM) is acknowledged for the availability of the deposition system and RTA furnace. This work has been partially financed by the CICYT (Spain) under contract no. TIC 01-1253.
Unesco subjects
Keywords
Citation
[1] Nicollian, E.H. and Brews, J.R., 1982, MOS (Metal Oxide Semiconductor), Physics and Technology, (New York: Wiley). [2] Yasuda, T., Ma, Y., Habermehl, S. and Lucovsky, G., 1992, Appl. Phys. Lett., 60, 434. [3] Ma, Y. and Lucovsky, G., 1994, J. Vac. Sci. Technol. B, 12, 2504. [4] Manchanda, L., Weber, G.R., Kim, Y.O., Feldman, L.C., Moryia, N., Weir, B.E., Kistler, R.C., Green, M.L. and Brasen, D., 1993, Microelectron. Eng., 22, 69. [5] Bhat, V.K., Bhat, K.N. and Subrahmanyam, A., 2000, Semicond. Sci. Technol., 15, 883. [6] Guo, X. and Ma, T.P., 1998, IEEE Electron Device Lett., 19, 207. [7] Cable, J., Mann, R.A. and Woo, C.S., 1991, IEEE Trans. Electron Device Lett., 12, 128. [8] Ting, W., Lo, G.Q., Ahn, J., Chu, T.Y. and Kwong, D.L., 1991, IEEE Electron Device Lett., 12, 416. [9] Arakawa, T., Matsumoto, R. and Kita, A., 1996, Japan. J. Appl. Phys., 35, 1491. [10] Carr, E.C. and Buhrman, R.A., 1993, Appl. Phys. Lett., 63, 54. [11] Fukuda, H., Yasuda, M., Iwabuchi, T. and Ohno, S., 1991, IEEE Electron Device Lett., 12, 578. [12] Claassen, W.A.P., Pol, H.A.J. Th v d, Goemans, A.H. and Kuiper, A.E.T., 1986, J. Electrochem. Soc., 133, 1458. [13] Denisse, C.M.M., Troost, K.Z., Oude Elferink, J.B., Habraken, F.H.P.M., van der Weg, W.F. and Hendriks, M., 1986, J. Appl. Phys., 60, 2536. [14] He, L-N., Inokuma, T. and Hasegawa, S., 1996, Japan. J. Appl. Phys., 35, 1503. [15] Hattangady, S.V., Niimi, H. and Lucovsky, G., 1996, J. Vac. Sci. Technol. A, 14, 3017. [16] Hernández Vélez, M., Sánchez Garrido, O., Fernández Gutiérrez, F., Falcony, C. and Martínez-Duart, J.M., 1998, J. Vac. Sci. Technol. B, 16, 1087. [17] Bulkin, P.V., Swart, P.L. and Lacquet, B.M., 1995, J. Non-Cryst. Solids, 187, 484. [18] Landheer, D., Tao, Y., Hulse, J.E., Quance, T. and Xu, D-X., 1996, J. Electrochem. Soc., 143, 1681. [19] Hernández, M.J., Garrido, J., Martínez, J. and Piqueras, J., 1997, Semicond. Sci. Technol., 12, 927. [20] del Prado, Á., Mártil, I., Fernández, M., and González-Díaz, G., 1999, Thin Solid Films, 343–344, 432. [21] Lu, Z., Santos-Filho, P., Stevens, G., Williams, M.J. and Lucovsky, G., 1995, J. Vac. Sci. Technol. A, 13, 607. [22] Fitch, J.T., Kim, S.S. and Lucovsky, G., 1990, J. Vac. Sci. Technol. A, 8, 1871. [23] Bhat, N., Wang, A.W. and Sarawat, K.C., 1999, IEEE Trans. Electron. Devices, 46, 63. [24] Martínez, F.L., del Prado, Á., Mártil, I., González-Díaz, G., Kliefoth, K. and Füssel, W., 2001, Semicond. Sci. Technol., 16, 534. [25] Martínez, F.L., del Prado, Á., Mártil, I., González-Díaz, G., Bohne, W., Fuhs, W., Röhrich, J., Selle, B. and Sieber, I., 2001, Phys. Rev. B, 63, 245320. [26] Bohne, W., Fuhs, W., Röhrich, J., Selle, B., Sieber, I., del Prado, Á., San Andrés, E., Mártil, I. and González-Díaz, G., 2002, Surf. Interface Anal., 34, 749. [27] del Prado, Á., San Andrés, E., Mártil, I., González-Díaz, G., Bravo, D., López, F.J., Bohne, W., Röhrich, J., Selle, B. and Martínez, F.L., 2003, J. Appl. Phys., 93, 8930. [28] Martínez, F.L., Mártil, I., González-Díaz, G., Selle, B. and Sieber, I., 1998, J. Non-Cryst. Solids, 227–230, 523. [29] Lam, Y.W., 1971, J. Phys. D: Appl. Phys., 4, 1370. [30] Füssel, W., Schmidt, M., Angermann, H., Mende, G. and Flietner, H., 1996, Nucl. Instrum. Meth. Phys. Res. A, 377, 177. [31] Terman, L.M., 1962, Solid-State Electron., 5, 285. [32] Deal, B.E., Fleming, P.J. and Castro, P.L., 1968, J. Electrochem. Soc., 115, 300. [33] Warren, W.L., Poindexter, E.H., Offenberg, M. and Müller-Warmuth, W., 1992, J. Electrochem. Soc., 139, 872. [34] Warren, W.L., Kanicki, J., Rong, F.C. and Poindexter, E.H., 1992, J. Electrochem. Soc., 139, 880. [35] Warren, W.L., Lenahan, P.M. and Curry, S.E., 1990, Phys. Rev. Lett., 65, 207. [36] Warren, W.L., Lenahan, P.M. and Kanicki, J., 1991, J. Appl. Phys., 70, 2220. [37] Robertson, J., 1991, Phil. Magazine B, 63, 47. [38] Perera, R., Ikeda, A., Hattori, R. and Kuroki, Y., 2003, Thin Solid Films, 423, 212. [39] del Prado, Á., San Andrés, E., Mártil, I., González-Díaz, G., Bravo, D., López, F.J., Fernández, M. and Martínez, F.L., 2003, J. Appl. Phys., 94, 1019. [40] San Andrés, E., del Prado, Á., Martínez, F.L., Mártil, I., Bravo, D. and López, F.J., 2000, J. Appl. Phys., 87, 1187. [41] del Prado, Á., San Andrés, E., Martínez, F.L., Mártil, I., González-Díaz, G., Bohne, W., Röhrich, J., Selle, B. and Fernández, M., 2002, Vacuum, 67, 507.
Collections