Aviso: por motivos de mantenimiento y mejora del repositorio, mañana martes día 13 de mayo, entre las 9 y las 14 horas, Docta Complutense, no funcionará con normalidad. Disculpen las molestias.
 

Continuous self-imaging regime with a double-grating mask

dc.contributor.authorSánchez Brea, Luis Miguel
dc.contributor.authorTorcal Milla, Francisco José
dc.contributor.authorBernabeu Martínez, Eusebio
dc.date.accessioned2023-06-20T03:42:33Z
dc.date.available2023-06-20T03:42:33Z
dc.date.issued2009-10-20
dc.description© 2009 Optical Society of America. This work has been supported by project CCG08-UCM/DPI-3952 of Dirección General de Universidades e Investigación de la Consejería de Educación de la Comunidad de Madrid y Universidad Complutense de Madrid and Consorcios Estratégicos Nacionales de Investigación Tecnología project “Tecnologías avanzadas para los equipos y procesos de fabricación de 2015. e-eficiente, e-cológica, e-máquina (eEe)” of the Ministerio de Industria, Turismo y Comercio.
dc.description.abstractWe analyze the Talbot effect produced by a mask composed of two diffraction gratings. Combinations with phase and amplitude gratings have been studied in the near-field regime. For a two-phase-gratings configuration, the Talbot effect is canceled, even when using monochromatic light; that is, the intensity distribution is nearly independent of the distance from the mask to the observation plane. Therefore, the mechanical tolerances of devices that use the Talbot effect may be improved. In addition, the spatial frequency of the fringes is quadrupled, which improves the accuracy of devices that employ this mask. An experimental verification for the best case two phase gratings, has also been performed, validating the theoretical results.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDirección General de Universidades e Investigación de la Consejería de Educación de la Comunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid (UCM)
dc.description.sponsorshipConsorcios Estratégicos Nacionales de Investigación Tecnología, España
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO), España
dc.description.sponsorshipMinisterio de Industria, Turismo y Comercio, España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26221
dc.identifier.doi10.1364/AO.48.005722
dc.identifier.issn1559-128X
dc.identifier.officialurlhttp://dx.doi.org/10.1364/AO.48.005722
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44292
dc.issue.number30
dc.journal.titleApplied Optics
dc.language.isoeng
dc.page.final5727
dc.page.initial5722
dc.publisherThe Optical Society Of America
dc.relation.projectIDCCG08- UCM/DPI-3952
dc.relation.projectIDTecnologías avanzadas para los equipos y procesos de fabricación de 2015. e-eficiente, e-cológica, e-máquina (eEe)
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordLight-Source
dc.subject.keywordTalbot
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleContinuous self-imaging regime with a double-grating mask
dc.typejournal article
dc.volume.number48
dcterms.references1. E. Keren and O. Kafri, “Diffraction effects in moiré deflectometry”, J. Opt. Soc. Am. A 2 (2), 111-120 (1985). 2. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect”, Opt. Commun. 2, 413-415 (1971). 3. F. Oreb and R. G. Dorsch “Profilometry by phase-shifted Talbot images”, Appl. Opt. 33, 7955-7962 (1994). 4. S. Wei, S. Wu, I. Kao, and F. P. Chiang “Measurement of wafer surface using shadow moire technique with Talbot effect”, J. Electron. Packag. 120166-170 (1998). 5. G. Schirripa Spagnolo, D. Ambrosini, and D. Paoletti, “Displacement measurement using the Talbot effect with a Ronchi grating”, J. Opt. A Pure Appl. Opt. 4, S376-S380 (2002). 6. W. H. F. Talbot, “Facts relating to optical science”, Philos. Mag. 9, 401-407 (1836). 7. K. Patorski, “The self-imaging phenomenon and its applications”, in Progress in Optics, E. Wolf, ed. (North-Holland, 1989), Vol. 27, pp. 1-108. 8. N. Guérineau, B. Harchaoui, and J. Primot, “Talbot experiment re-examined: demonstration of an achromatic and continuous self-imaging regime”, Opt. Commun. 180, 199-203(2000). 9. L. M.Sanchez-Brea, J. Saez-Landete, J. Alonso, and E. Bernabeu “Invariant grating pseudo-imaging using polychromatic light and finite extension source”, Appl. Opt. 47, 1470-1477(2008). 10. L. M. Sanchez-Brea, J. Alonso, and E. Bernabeu “Quasicontinuous pseudoimages for sinusoidal grating imaging using an extended light source”, Opt. Commun. 23653-58 (2004). 11. G. Vincent, R. Haidar, S. Collin, N. Guérineau, J. Primot, E. Cambril, and J. L. Pelouard “Realization of sinusoidal transmittance with subwavelength metallic structures”, J. Opt. Soc. Am. B 25, 834-840 (2008). 12. K. Patorsky, Handbook of the Moiré Fringe Technique (Elsevier, 1993). 13. D. Crespo, J. Alonso, and E. Bernabeu, “Generalized grating imaging using an extended monochromatic light source”, J. Opt. Soc. Am. A 17, 1231-1240 (2000).
dspace.entity.typePublication
relation.isAuthorOfPublication72f8db7f-8a25-4d15-9162-486b0f884481
relation.isAuthorOfPublication.latestForDiscovery72f8db7f-8a25-4d15-9162-486b0f884481

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bernabeu,E22libre.pdf
Size:
859.56 KB
Format:
Adobe Portable Document Format

Collections