Continuous self-imaging regime with a double-grating mask

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
The Optical Society Of America
Google Scholar
Research Projects
Organizational Units
Journal Issue
We analyze the Talbot effect produced by a mask composed of two diffraction gratings. Combinations with phase and amplitude gratings have been studied in the near-field regime. For a two-phase-gratings configuration, the Talbot effect is canceled, even when using monochromatic light; that is, the intensity distribution is nearly independent of the distance from the mask to the observation plane. Therefore, the mechanical tolerances of devices that use the Talbot effect may be improved. In addition, the spatial frequency of the fringes is quadrupled, which improves the accuracy of devices that employ this mask. An experimental verification for the best case two phase gratings, has also been performed, validating the theoretical results.
© 2009 Optical Society of America. This work has been supported by project CCG08-UCM/DPI-3952 of Dirección General de Universidades e Investigación de la Consejería de Educación de la Comunidad de Madrid y Universidad Complutense de Madrid and Consorcios Estratégicos Nacionales de Investigación Tecnología project “Tecnologías avanzadas para los equipos y procesos de fabricación de 2015. e-eficiente, e-cológica, e-máquina (eEe)” of the Ministerio de Industria, Turismo y Comercio.
1. E. Keren and O. Kafri, “Diffraction effects in moiré deflectometry”, J. Opt. Soc. Am. A 2 (2), 111-120 (1985). 2. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect”, Opt. Commun. 2, 413-415 (1971). 3. F. Oreb and R. G. Dorsch “Profilometry by phase-shifted Talbot images”, Appl. Opt. 33, 7955-7962 (1994). 4. S. Wei, S. Wu, I. Kao, and F. P. Chiang “Measurement of wafer surface using shadow moire technique with Talbot effect”, J. Electron. Packag. 120166-170 (1998). 5. G. Schirripa Spagnolo, D. Ambrosini, and D. Paoletti, “Displacement measurement using the Talbot effect with a Ronchi grating”, J. Opt. A Pure Appl. Opt. 4, S376-S380 (2002). 6. W. H. F. Talbot, “Facts relating to optical science”, Philos. Mag. 9, 401-407 (1836). 7. K. Patorski, “The self-imaging phenomenon and its applications”, in Progress in Optics, E. Wolf, ed. (North-Holland, 1989), Vol. 27, pp. 1-108. 8. N. Guérineau, B. Harchaoui, and J. Primot, “Talbot experiment re-examined: demonstration of an achromatic and continuous self-imaging regime”, Opt. Commun. 180, 199-203(2000). 9. L. M.Sanchez-Brea, J. Saez-Landete, J. Alonso, and E. Bernabeu “Invariant grating pseudo-imaging using polychromatic light and finite extension source”, Appl. Opt. 47, 1470-1477(2008). 10. L. M. Sanchez-Brea, J. Alonso, and E. Bernabeu “Quasicontinuous pseudoimages for sinusoidal grating imaging using an extended light source”, Opt. Commun. 23653-58 (2004). 11. G. Vincent, R. Haidar, S. Collin, N. Guérineau, J. Primot, E. Cambril, and J. L. Pelouard “Realization of sinusoidal transmittance with subwavelength metallic structures”, J. Opt. Soc. Am. B 25, 834-840 (2008). 12. K. Patorsky, Handbook of the Moiré Fringe Technique (Elsevier, 1993). 13. D. Crespo, J. Alonso, and E. Bernabeu, “Generalized grating imaging using an extended monochromatic light source”, J. Opt. Soc. Am. A 17, 1231-1240 (2000).