Fipronil sulfone induced higher cytotoxicity than fipronil in SH-SY5Y cells: Protection by antioxidants

Citation
Romero A, Ramos E, Ares I, Castellano V, Martínez M, Martínez-Larrañaga MR, Anadón A, Martínez MA. Fipronil sulfone induced higher cytotoxicity than fipronil in SH-SY5Y cells: Protection by antioxidants. Toxicol Lett. 2016 Jun 11;252:42-9. doi: 10.1016/j.toxlet.2016.04.005. Epub 2016 Apr 8. PMID: 27067106
Abstract
Fipronil is a broad spectrum insecticide from the phenyl pyrazole family, which targets GABA receptor. Limited information is available about the metabolite fipronil sulfone cytotoxic actions. This study examined in vitro neurotoxicity of fipronil and fipronil sulfone and evaluated Trolox (vitamin E analog) (0.3, 1μM), N-acetyl-cysteine (0.5, 1mM), melatonin (0.1, 1μM) and Tempol (superoxide dismutase analog) (0.3, 0.5mM) protective role in SH-SY5Y cells. MTT and LDH assays were carried out to assess the cytotoxicity of fipronil and fipronil sulfone at 3-100μM concentrations. Fipronil sulfone was more toxic than fipronil. Tempol showed the best neuroprotectant profile against fipronil (50 and 150μM) and fipronil sulfone (3 and 10μM) reaching control levels. Fipronil (100μM) and fipronil sulfone (3μM) treatments induced a 4.7- and 5-fold increases in lipid peroxides measured as malondialdehyde (MDA) and a 2.2- and 2.0-fold increases in the levels of nitric oxide (NO). These results suggest that oxidative stress observed may be one of the major mechanisms of fipronil-induced neurotoxicity and it may be attributed in part to fipronil disposition and metabolism. Our results led us postulate that metabolite fipronil sulfone might be responsible for the fipronil-induced toxicity rather than fipronil itself.
Research Projects
Organizational Units
Journal Issue
Description
Unesco subjects
Keywords
Collections