Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Solving nonlinear rational expectations models by eigenvalue-eigenvector decompositions

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

1998

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Facultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
Citations
Google Scholar

Citation

Abstract

We provide a summarized presentation of solution methods for rational expectations models, based on eigenvalue/eigenvector decompositions. These methods solve systems of stochastic linear difference equations by relying on the use of stability conditions derived from the eigenvectors associated to unstable eigenvalues of the coefficient matrices in the system. For nonlinear models, a linear approximation must be obtained, and the stability conditions are approximate, This is however, the only source of approximation error, since the nonlinear structure of the original model is used to produce the numerical solution. After applying the method to a baseline stochastic growth model, we explain how it can be used: i) to salve some identification problems that may arise in standard growth models, and ii) to solve endogenous growth models.

Research Projects

Organizational Units

Journal Issue

Description

Keywords