Solving nonlinear rational expectations models by eigenvalue-eigenvector decompositions

dc.contributor.authorNovales Cinca, Alfonso Santiago
dc.contributor.authorDomínguez Irastorza, Emilio
dc.contributor.authorPérez, Javier
dc.contributor.authorRuiz Andújar, Jesús
dc.date.accessioned2023-06-21T01:37:57Z
dc.date.available2023-06-21T01:37:57Z
dc.date.issued1998
dc.description.abstractWe provide a summarized presentation of solution methods for rational expectations models, based on eigenvalue/eigenvector decompositions. These methods solve systems of stochastic linear difference equations by relying on the use of stability conditions derived from the eigenvectors associated to unstable eigenvalues of the coefficient matrices in the system. For nonlinear models, a linear approximation must be obtained, and the stability conditions are approximate, This is however, the only source of approximation error, since the nonlinear structure of the original model is used to produce the numerical solution. After applying the method to a baseline stochastic growth model, we explain how it can be used: i) to salve some identification problems that may arise in standard growth models, and ii) to solve endogenous growth models.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28797
dc.identifier.relatedurlhttp://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64209
dc.issue.number08
dc.language.isoeng
dc.page.total36
dc.publication.placeMadrid
dc.publisherFacultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subject.keywordEigenvalue-eigenvector decompositions
dc.subject.keywordNumerical solutions
dc.subject.keywordRational expectations.
dc.subject.ucmProcesos estocásticos
dc.subject.unesco1208.08 Procesos Estocásticos
dc.titleSolving nonlinear rational expectations models by eigenvalue-eigenvector decompositions
dc.typetechnical report
dc.volume.number1998
dcterms.references[1] Benhabib, J. and R Perli (1994), "Uniqueness and Indeterminacy: On the Dynamics of Endogenous Growth", Journal of Economic Theory 63, 113-142. [2] Caballé, J. and M. Santos (1993), "On Endogenous Growth with Physical and Human Capital", Journal of Political Economy 101, 1042-1067. [3] Correia, I., J.C. Neves and S. Rebelo (1995). "Business Cycles in a Small Open Economy", European Economic Review 39, 1089-1113. [4] Danthine, J.P. and J. Donaldson (995). "Computing Equilibria of Nonoptimal Economies", chapter 3 in T.F. Cooley (Ed,) Frontiers of Business Cycle Research, Princeton University Press. [5] Den Haan. W, J. and A. Marcet (1990). "Solving the Stochastic Growth Model by Parameterizing Expectations". Journal of Business and Economzc Statistics 8, 31-34. [6] Den Baan, W.J. and A. Marcet (1994), "Accuracy in Simulations", Review of Economic Studies 61, 3-17. [7] Díaz-Giménez, J., (1998), "Linear Quadratic Approximations: An Introduction". this issue. [8] Hansen, G., (1985), "Indivisible Labor and the Business Cycle", Journal of Monetary Economics 16, 309-327. [9] Hansen, G., (1997), "Technical Progress and Aggregate Fluctuations", Journal of Economic Dynamics and Control 21, 1005-1023. [10] Journal of Business and Economic Statistics (1990), 8. Special issue on Solving Nonlinear, Stochastic Growth Models. [11] Kydland, F. and E.C. Prescott (1982), "Time to Build and Aggregate Fluctuations" Econometrica 6, 1345-1370. [12] Marcet, A. and G. Lorenzoni (1998), "The Paramerized Expectations Approach: Some Practical Issues", this issue. [13] Marcet, A. (1993), "Simulation Analysis of Dynamic Stochastic Models", chapter 3 in C. A. Sims (Ed.) Advances in Econometrics, Cambridge University Press. [14] Mendoza, E. (1991), "Real Business Cycles in a Small Open Eeonomy", American Economic Review 81, 797-818. [15] Sims, C.A. (1994), "A Simple Model for Study of the Determination of the Price Level and the Interaction of Monetary and Fiscal Policy", Economic Theory 4, 381-399. [16] Sims, C.A. (1998). "Solving Linear Rational Expectations Models". Computational Economics, to appear. [17] Uhlig, H. (1998), "A toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily", this issue. [18] Uzawa, H. (1965), "Optimum Technical Change in an Aggregative Model of Economic Growth". International Economic Review 6, 18-31. [19] Whiteman, C. H. (1983), "Linear Rational Expectations Models: a User's guide", University of Minnesota Press, Minneapolis. [20] Xie, D. (1994), "Divergence in Economic Performance: Transitional Dynamics with Multiple Equilibria", Journal of Economic Theory 63, 67 -112.
dspace.entity.typePublication
relation.isAuthorOfPublication1ebcfd7a-98fe-4310-bd7a-db2e0e8d1bed
relation.isAuthorOfPublication09e8d6db-f2ef-4fb3-9a82-3fcf571145ba
relation.isAuthorOfPublication.latestForDiscovery1ebcfd7a-98fe-4310-bd7a-db2e0e8d1bed

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9808.pdf
Size:
1 MB
Format:
Adobe Portable Document Format