Nanocarbon-Based Glycoconjugates as Multivalent Inhibitors of Ebola Virus Infection

Citation
Rodríguez-Pérez, L.; Ramos-Soriano, J.; Pérez-Sánchez, A.; Illescas, B. M.; Muñoz, A.; Luczkowiak, J.; Lasala, F.; Rojo, J.; Delgado, R.; Martín, N. Nanocarbon-Based Glycoconjugates as Multivalent Inhibitors of Ebola Virus Infection. J. Am. Chem. Soc. 2018, 140, 9891-9898 DOI:10.1021/jacs.8b03847.
Abstract
SWCNTs, MWCNTs, and SWCNHs have been employed as virus-mimicking nanocarbon platforms for the multivalent presentation of carbohydrates in an artificial Ebola virus infection model assay. These carbon nanoforms have been chemically modified by the covalent attachment of glycodendrons and glycofullerenes using the CuAAC “click chemistry” approach. This modification dramatically increases the water solubility of these structurally different nanocarbons. Their efficiency in blocking DC-SIGN-mediated viral infection by an artificial Ebola virus has been tested in a cellular experimental assay, finding that glycoconjugates based on MWCNTs functionalized with glycofullerenes are potent inhibitors of viral infection.
Research Projects
Organizational Units
Journal Issue
Description
Keywords
Collections