Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

LFSR-based bit-serial GF(^2m) multipliers using irreducible trinomials

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers (IEEE)
Citations
Google Scholar

Citation

Abstract

In this article, a new architecture of bit-serial polynomial basis (PB) multipliers over the binary extension field GF(^2m) generated by irreducible trinomials is presented. Bit-serial GF(^2m) PB multiplication offers a performance/area trade-off that is very useful in resource constrained applications. The architecture here proposed is based on LFSR (Linear-Feedback Shift Register) and can perform a multiplication in m clock cycles with a constant propagation delay of T_A + T_X. These values match the best time results found in the literature for bit-serial PB multipliers with a slight reduction of the space complexity. Furthermore, the proposed architecture can perform the multiplication of two operands for t different finite fields GF(^2m) generated by t irreducible trinomials simultaneously in m clock cycles with the inclusion of t(m - 1) flipflops and tm XOR gates.

Research Projects

Organizational Units

Journal Issue

Description

© 2021 Institute of Electrical and Electronics This work was supported in part by the Spanish MINECO and CM under Grant S2018/TCS-4423, Grant TIN 2015-65277-R, and Grant RTI2018-093684-B-I00.

Keywords

Collections