Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Principal eigenvalue, maximum principles and linear stability for nonlocal diffusion equations in metric measure spaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Inc.
Citations
Google Scholar

Citation

Rodríguez-Bernal, A. (2022). Principal eigenvalue, maximum principles and linear stability for nonlocal diffusion equations in metric measure spaces. Nonlinear Analysis, 221, 112887. https://doi.org/10.1016/j.na.2022.112887

Abstract

We study principal eigenvalues and maximum principles for stationary nonlocal operators in spaces of integrable functions defined on general metric measure spaces under minimal assumptions on the kernels. Several characterizations of the principal eigenvalue are given as well as several conditions guaranteeing existence. Characterization of the (strong) maximum principle is also given. For evolution problems we prove the strong maximum principle and characterize stability in terms of the sign of the principal eigenvalue. We recover, extend and improve all previously known results, obtained for smooth open sets in euclidean space under continuity assumptions on the data.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections