Principal eigenvalue, maximum principles and linear stability for nonlocal diffusion equations in metric measure spaces
dc.contributor.author | Rodríguez Bernal, Aníbal | |
dc.date.accessioned | 2023-11-16T12:33:50Z | |
dc.date.available | 2023-11-16T12:33:50Z | |
dc.date.issued | 2022-03-12 | |
dc.description.abstract | We study principal eigenvalues and maximum principles for stationary nonlocal operators in spaces of integrable functions defined on general metric measure spaces under minimal assumptions on the kernels. Several characterizations of the principal eigenvalue are given as well as several conditions guaranteeing existence. Characterization of the (strong) maximum principle is also given. For evolution problems we prove the strong maximum principle and characterize stability in terms of the sign of the principal eigenvalue. We recover, extend and improve all previously known results, obtained for smooth open sets in euclidean space under continuity assumptions on the data. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía, Comercio y Empresa (España) | |
dc.description.status | pub | |
dc.identifier.citation | Rodríguez-Bernal, A. (2022). Principal eigenvalue, maximum principles and linear stability for nonlocal diffusion equations in metric measure spaces. Nonlinear Analysis, 221, 112887. https://doi.org/10.1016/j.na.2022.112887 | |
dc.identifier.doi | 10.1016/j.na.2022.112887 | |
dc.identifier.officialurl | https//doi.org/10.1016/j.na.2022.112887 | |
dc.identifier.relatedurl | http://www.elsevier.com/locate/na | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/88752 | |
dc.journal.title | Nonlinear Analysis | |
dc.language.iso | eng | |
dc.page.initial | 112887 | |
dc.publisher | Elsevier Inc. | |
dc.relation.projectID | info:eu-repo/grantAgreement/UCM/Ecuaciones en derivadas parciales: dinámica asintótica y perturbaciones/MTM2016-75465 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UCM/Aspectos lineales y no lineales en ecuaciones en derivadas parciales. Dinámica asintótica y perturbaciones/PID2019-103860GB-I00 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Nonlocal equations | |
dc.subject.keyword | Dispersal | |
dc.subject.keyword | Maximum principle | |
dc.subject.keyword | Linear stability | |
dc.subject.keyword | Principal eigenvalues | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Principal eigenvalue, maximum principles and linear stability for nonlocal diffusion equations in metric measure spaces | en |
dc.type | journal article | |
dc.type.hasVersion | CVoR | |
dc.volume.number | 221 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | fb7ac82c-5148-4dd1-b893-d8f8612a1b08 | |
relation.isAuthorOfPublication.latestForDiscovery | fb7ac82c-5148-4dd1-b893-d8f8612a1b08 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- rodriguez_bernal_principal.pdf
- Size:
- 410.73 KB
- Format:
- Adobe Portable Document Format