Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Principal eigenvalue, maximum principles and linear stability for nonlocal diffusion equations in metric measure spaces

dc.contributor.authorRodríguez Bernal, Aníbal
dc.date.accessioned2023-11-16T12:33:50Z
dc.date.available2023-11-16T12:33:50Z
dc.date.issued2022-03-12
dc.description.abstractWe study principal eigenvalues and maximum principles for stationary nonlocal operators in spaces of integrable functions defined on general metric measure spaces under minimal assumptions on the kernels. Several characterizations of the principal eigenvalue are given as well as several conditions guaranteeing existence. Characterization of the (strong) maximum principle is also given. For evolution problems we prove the strong maximum principle and characterize stability in terms of the sign of the principal eigenvalue. We recover, extend and improve all previously known results, obtained for smooth open sets in euclidean space under continuity assumptions on the data.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.statuspub
dc.identifier.citationRodríguez-Bernal, A. (2022). Principal eigenvalue, maximum principles and linear stability for nonlocal diffusion equations in metric measure spaces. Nonlinear Analysis, 221, 112887. https://doi.org/10.1016/j.na.2022.112887
dc.identifier.doi10.1016/j.na.2022.112887
dc.identifier.officialurlhttps//doi.org/10.1016/j.na.2022.112887
dc.identifier.relatedurlhttp://www.elsevier.com/locate/na
dc.identifier.urihttps://hdl.handle.net/20.500.14352/88752
dc.journal.titleNonlinear Analysis
dc.language.isoeng
dc.page.initial112887
dc.publisherElsevier Inc.
dc.relation.projectIDinfo:eu-repo/grantAgreement/UCM/Ecuaciones en derivadas parciales: dinámica asintótica y perturbaciones/MTM2016-75465
dc.relation.projectIDinfo:eu-repo/grantAgreement/UCM/Aspectos lineales y no lineales en ecuaciones en derivadas parciales. Dinámica asintótica y perturbaciones/PID2019-103860GB-I00
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu517.98
dc.subject.keywordNonlocal equations
dc.subject.keywordDispersal
dc.subject.keywordMaximum principle
dc.subject.keywordLinear stability
dc.subject.keywordPrincipal eigenvalues
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titlePrincipal eigenvalue, maximum principles and linear stability for nonlocal diffusion equations in metric measure spacesen
dc.typejournal article
dc.type.hasVersionCVoR
dc.volume.number221
dspace.entity.typePublication
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscoveryfb7ac82c-5148-4dd1-b893-d8f8612a1b08

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
rodriguez_bernal_principal.pdf
Size:
410.73 KB
Format:
Adobe Portable Document Format

Collections