A classification of integrable quasiclassical deformations of algebraic curves

Thumbnail Image
Full text at PDC
Publication Date
Konopelchenko, Boris
Medina Reus, Elena
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
IOP Publishing
Google Scholar
Research Projects
Organizational Units
Journal Issue
A previously introduced scheme for describing integrable deformations of algebraic curves is completed. Lenard relations are used to characterize and classify these deformations in terms of hydrodynamic-type systems. A general solution of the compatibility conditions for consistent deformations is given and expressions for the solutions of the corresponding Lenard relations are provided.
©IOP Publishing . The authors wish to thank Prof. Y. Kodama for his interest and help during the elaboration of this work.
Unesco subjects
[1] S. P. Novikov, S. V. Manakov, L. P. Pitaevski and V. E. Zakharov Theory of solitons, Plenum, New York (1984). [2] E. D. Belokolos, A. I. Bobenko , V. Z. Enolski, A. R. Its and V. B. Matveev, Algebro-Geometric approach to nonlinear integrable equations, Springer-Verlag, Berlin (1994). [3] B. Dubrovin and S. Novikov, Russ. Math. Surv. 44(6), 35 (1989). [4] H. Flaschka, M.G. Forest and D.W. Mclauglin , Commun. Pure Appl. Math 33, 739 (1980). [5] B.A. Dubrovin, Commun. Math. Phys. 145, 415 (1992). [6] I. M. Krichever, Funct. Anal. Appl. 22, 206 (1988). [7] I. M. Krichever, Commun. Pure. Appl. Math. 47, 437 (1994). [8] Y. Kodama and B.G. Konopelchenko, J. Phys. A: Math. Gen. 35, L489-L500 (2002); [9] B.G. Konopelchenko and L. Mart´ınez Alonso, J. Phys. A: Math. Gen. 37, 7859 (2004). [10] Y. Kodama, B.G. Konopelchenko and L. Martínez Alonso, Theor. Math. Phys. 144, 961 (2005) [11] Y. Kodama, B.G. Konopelchenko, L. Mart´ınez Alonso and E. Medina, J. Math. Phys. 46 113502 (2005). [12] B. L. van der Waerden,Algebra, Vol. I, Springer- Verlag, Berlin (1991). [13] L. Redei, Introduction to algebra, Vol. I, Pergamon Press, Oxford (1967). [14] R. Y. Walker, Algebraic Curves Springer-Verlag, Berlin (1978). [15] S. S. Abhyankar, Algebraic Geometry for Scientists and Engineers, Mathematical Surveys and Monograps vol. 35, AMS (1990).