Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A classification of integrable quasiclassical deformations of algebraic curves

dc.contributor.authorKonopelchenko, Boris
dc.contributor.authorMartínez Alonso, Luis
dc.contributor.authorMedina Reus, Elena
dc.date.accessioned2023-06-20T11:02:52Z
dc.date.available2023-06-20T11:02:52Z
dc.date.issued2006-08-08
dc.description©IOP Publishing . The authors wish to thank Prof. Y. Kodama for his interest and help during the elaboration of this work.
dc.description.abstractA previously introduced scheme for describing integrable deformations of algebraic curves is completed. Lenard relations are used to characterize and classify these deformations in terms of hydrodynamic-type systems. A general solution of the compatibility conditions for consistent deformations is given and expressions for the solutions of the corresponding Lenard relations are provided.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34290
dc.identifier.doi10.1088/0305-4470/39/36/008
dc.identifier.issn0305-4470
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0305-4470/39/36/008
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/nlin/0604048
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51642
dc.issue.number36
dc.journal.titleJournal of physics A: Mathematical and general
dc.language.isoeng
dc.page.final11246
dc.page.initial11231
dc.publisherIOP Publishing
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordHierarchy
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleA classification of integrable quasiclassical deformations of algebraic curves
dc.typejournal article
dc.volume.number39
dcterms.references[1] S. P. Novikov, S. V. Manakov, L. P. Pitaevski and V. E. Zakharov Theory of solitons, Plenum, New York (1984). [2] E. D. Belokolos, A. I. Bobenko , V. Z. Enolski, A. R. Its and V. B. Matveev, Algebro-Geometric approach to nonlinear integrable equations, Springer-Verlag, Berlin (1994). [3] B. Dubrovin and S. Novikov, Russ. Math. Surv. 44(6), 35 (1989). [4] H. Flaschka, M.G. Forest and D.W. Mclauglin , Commun. Pure Appl. Math 33, 739 (1980). [5] B.A. Dubrovin, Commun. Math. Phys. 145, 415 (1992). [6] I. M. Krichever, Funct. Anal. Appl. 22, 206 (1988). [7] I. M. Krichever, Commun. Pure. Appl. Math. 47, 437 (1994). [8] Y. Kodama and B.G. Konopelchenko, J. Phys. A: Math. Gen. 35, L489-L500 (2002); [9] B.G. Konopelchenko and L. Mart´ınez Alonso, J. Phys. A: Math. Gen. 37, 7859 (2004). [10] Y. Kodama, B.G. Konopelchenko and L. Martínez Alonso, Theor. Math. Phys. 144, 961 (2005) [11] Y. Kodama, B.G. Konopelchenko, L. Mart´ınez Alonso and E. Medina, J. Math. Phys. 46 113502 (2005). [12] B. L. van der Waerden,Algebra, Vol. I, Springer- Verlag, Berlin (1991). [13] L. Redei, Introduction to algebra, Vol. I, Pergamon Press, Oxford (1967). [14] R. Y. Walker, Algebraic Curves Springer-Verlag, Berlin (1978). [15] S. S. Abhyankar, Algebraic Geometry for Scientists and Engineers, Mathematical Surveys and Monograps vol. 35, AMS (1990).
dspace.entity.typePublication
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery896aafc0-9740-4609-bc38-829f249a0d2b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
martinezalonso19preprint.pdf
Size:
183.92 KB
Format:
Adobe Portable Document Format

Collections