Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Artin-Lang property for normal real analytic surfaces

dc.contributor.authorAndradas Heranz, Carlos
dc.contributor.authorDíaz-Cano Ocaña, Antonio
dc.contributor.authorRuiz Sancho, Jesús María
dc.date.accessioned2023-06-20T09:31:47Z
dc.date.available2023-06-20T09:31:47Z
dc.date.issued2003
dc.description.abstractWe solve the 17th Hilbert Problem and prove the Artin-Lang property for normal real analytic surfaces. Then we deduce that the absolute (resp. relative) holomorphy ring of such a surface consists of all bounded (resp. locally bounded) meromorphic functions.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14763
dc.identifier.doi10.1515/crll.2003.026
dc.identifier.issn0075-4102
dc.identifier.officialurlhttp://www.degruyter.com/view/j/crll
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49819
dc.journal.titleJournal für die reine und angewandte Mathematik
dc.language.isoeng
dc.page.final111
dc.page.initial99
dc.publisherWalter de Gruyter
dc.relation.projectIDPB98-0756-C02-01
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordReal analytic surfaces
dc.subject.keywordMeromorphic functions.
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleThe Artin-Lang property for normal real analytic surfaces
dc.typejournal article
dc.volume.number556
dcterms.references[1] M. A. Aba´nades, N. Joglar-Prieto, J. M. Ruiz, Bounded meromorphic functions on compact real analytic sets, J. Pure Appl. Algebra 142 (1999), 1–11. [2] C. Andradas, L. Bro¨cker, J. M. Ruiz, Constructible sets in real geometry, Ergeb. Math. 33, Springer-Verlag, 1996. [3] E. Becker, The real holomorphy ring and sums of 2n-th powers, in: Ge´ome´trie alge´brique re´elle et formes quadratiques, Proceedings, Rennes 1981, Springer Lect. Notes Math. 959 (1982), 139–181. [4] J. Bochnak, W. Kucharz, M. Shiota, On equivalence of ideals of real global analytic functions and the 17th Hilbert problem, Invent. Math. 63 (1981), 403–421. [5] A. Castilla, Artin-Lang property for analytic manifolds of dimension two, Math. Z. 217 (1994), 5–14. [6] S. Coen, Sul rango dei fasci coerenti, Boll. U. Mat. Ital. 22 (1967), 373–383. [7] R. C. Heitmann, Generating ideals in Pru¨ fer domains, Pacific J. Math. 62 (1976), 117–126. [8] P. Jaworski, Positive definite analytic functions and vector bundles, Bull. Ac. Polonaise Sc. XXX (1982), 501–506. [9] P. Jaworski, The 17-th Hilbert problem for noncompact real analytic manifolds, Springer Lect. Notes Math. 1524 (1991), 289–295.
dspace.entity.typePublication
relation.isAuthorOfPublicationa74c23fe-4059-4e73-806b-71967e14ab67
relation.isAuthorOfPublication134ad262-ecde-4097-bca7-ddaead91ce52
relation.isAuthorOfPublicationf12f8d97-65c7-46aa-ad47-2b7099b37aa4
relation.isAuthorOfPublication.latestForDiscoverya74c23fe-4059-4e73-806b-71967e14ab67

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
06.pdf
Size:
179.13 KB
Format:
Adobe Portable Document Format

Collections