The Artin-Lang property for normal real analytic surfaces
dc.contributor.author | Andradas Heranz, Carlos | |
dc.contributor.author | Díaz-Cano Ocaña, Antonio | |
dc.contributor.author | Ruiz Sancho, Jesús María | |
dc.date.accessioned | 2023-06-20T09:31:47Z | |
dc.date.available | 2023-06-20T09:31:47Z | |
dc.date.issued | 2003 | |
dc.description.abstract | We solve the 17th Hilbert Problem and prove the Artin-Lang property for normal real analytic surfaces. Then we deduce that the absolute (resp. relative) holomorphy ring of such a surface consists of all bounded (resp. locally bounded) meromorphic functions. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14763 | |
dc.identifier.doi | 10.1515/crll.2003.026 | |
dc.identifier.issn | 0075-4102 | |
dc.identifier.officialurl | http://www.degruyter.com/view/j/crll | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49819 | |
dc.journal.title | Journal für die reine und angewandte Mathematik | |
dc.language.iso | eng | |
dc.page.final | 111 | |
dc.page.initial | 99 | |
dc.publisher | Walter de Gruyter | |
dc.relation.projectID | PB98-0756-C02-01 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Real analytic surfaces | |
dc.subject.keyword | Meromorphic functions. | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | The Artin-Lang property for normal real analytic surfaces | |
dc.type | journal article | |
dc.volume.number | 556 | |
dcterms.references | [1] M. A. Aba´nades, N. Joglar-Prieto, J. M. Ruiz, Bounded meromorphic functions on compact real analytic sets, J. Pure Appl. Algebra 142 (1999), 1–11. [2] C. Andradas, L. Bro¨cker, J. M. Ruiz, Constructible sets in real geometry, Ergeb. Math. 33, Springer-Verlag, 1996. [3] E. Becker, The real holomorphy ring and sums of 2n-th powers, in: Ge´ome´trie alge´brique re´elle et formes quadratiques, Proceedings, Rennes 1981, Springer Lect. Notes Math. 959 (1982), 139–181. [4] J. Bochnak, W. Kucharz, M. Shiota, On equivalence of ideals of real global analytic functions and the 17th Hilbert problem, Invent. Math. 63 (1981), 403–421. [5] A. Castilla, Artin-Lang property for analytic manifolds of dimension two, Math. Z. 217 (1994), 5–14. [6] S. Coen, Sul rango dei fasci coerenti, Boll. U. Mat. Ital. 22 (1967), 373–383. [7] R. C. Heitmann, Generating ideals in Pru¨ fer domains, Pacific J. Math. 62 (1976), 117–126. [8] P. Jaworski, Positive definite analytic functions and vector bundles, Bull. Ac. Polonaise Sc. XXX (1982), 501–506. [9] P. Jaworski, The 17-th Hilbert problem for noncompact real analytic manifolds, Springer Lect. Notes Math. 1524 (1991), 289–295. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a74c23fe-4059-4e73-806b-71967e14ab67 | |
relation.isAuthorOfPublication | 134ad262-ecde-4097-bca7-ddaead91ce52 | |
relation.isAuthorOfPublication | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 | |
relation.isAuthorOfPublication.latestForDiscovery | a74c23fe-4059-4e73-806b-71967e14ab67 |
Download
Original bundle
1 - 1 of 1