Noradrenergic vasoconstriction of pig prostatic small arteries

Citation
Recio P, Orensanz LM, Martínez MP, Navarro-Dorado J, Bustamante S, García-Sacristán A, et al. Noradrenergic vasoconstriction of pig prostatic small arteries. Naunyn-Schmied Arch Pharmacol 2008;376:397–406. https://doi.org/10.1007/s00210-007-0227-x.
Abstract
The current study investigated the distribution of adrenergic nerves and the action induced by noradrenaline (NA) in pig prostatic small arteries. Noradrenergic innervation was visualized using an antibody against dopamine-beta-hydroxylase (DBH), and the NA effect was studied in small arterial rings mounted in microvascular myographs for isometric force recordings. DBH-immunoreactive nerve fibers were located at the adventitia and the adventitia-media border of the vascular wall. Electrical field stimulation (EFS, 1-32 Hz) evoked frequency-dependent contractions that were reduced by guanethidine and prazosin (adrenergic neurotransmission and α1-adrenoceptors blockers, respectively) and by the α2-adrenoceptor agonist UK 14,304. The α2-adrenoceptor antagonist rauwolscine reversed the UK 14,304-produced inhibition. NA produced endothelium-independent contractions that were antagonized with low estimated affinities and Schild slopes different from unity by prazosin and the α1A-adrenoceptor antagonist N-[2-(2-cyclopropylmethoxyphenoxy) ethyl]-5-chloro-α-α-dimethyl-1H-indole-3-ethanamine (RS 17053). The α1A-adrenoceptor antagonist 5-methyl-3-[3-[4-[2-(2,2,2,-trifluoroethoxy) phenyl]-1-piperazinyl]propyl]-2,4-(1H)-pyrimidinedione (RS 100329), which also displays high affinity for α1L-adrenoceptors, and the α1L-adrenoceptor antagonist tamsulosin, which also has high affinity for α1A- and α1D-adrenoceptors, induced rightward shifts with high affinity of the contraction-response curve to NA. The α1D-adrenoceptor antagonist 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]8-azaspiro[4,5]decane-7,9-dione dihydrochloride (BMY 7378) failed to modify the NA contractions that were inhibited by extracellular Ca2+ removal and by voltage-activated (L-type) Ca2+ channel blockade. These data suggest that pig prostatic resistance arteries have a rich noradrenergic innervation; and NA, whose release is modulated by prejunctional α2-adrenoceptors, evokes contraction mainly through activation of muscle α1L-adrenoceptors coupled to extracellular Ca2+ entry via voltage (L-type)- and non-voltage-activated Ca2+ channels.
Research Projects
Organizational Units
Journal Issue
Description
Keywords
Collections