Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Some results on blow up for semilinear parabolic problems

Loading...
Thumbnail Image

Full text at PDC

Publication date

1993

Advisors (or tutors)

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

The authors describe the asymptotic behavior of blow-up for the semilinear heat equation ut=uxx+f(u) in R×(0,T), with initial data u0(x)>0 in R, where f(u)=up, p>1, or f(u)=eu. A complete description of the types of blow-up patterns and of the corresponding blow-up final-time profiles is given. In the rescaled variables, both are governed by the structure of the Hermite polynomials H2m(y). The H2-behavior is shown to be stable and generic. The existence of H4-behavior is proved. A nontrivial blow-up pattern with a blow-up set of nonzero measure is constructed. Similar results for the absorption equation ut=uxx−up, 0<p<1, are discussed.

Research Projects

Organizational Units

Journal Issue

Description

Proceedings of the IMA Workshop held at the University of Minnesota, Minneapolis, Minnesota, May 13–18, 1991

Keywords