Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Relativistic many-body Hamiltonian approach to mesons

dc.contributor.authorLlanes Estrada, Felipe José
dc.contributor.authorCotanch, Stephen R.
dc.date.accessioned2023-06-20T18:52:38Z
dc.date.available2023-06-20T18:52:38Z
dc.date.issued2002-01-14
dc.description©2002 Elsevier Science B.V. All rights reserved. The authors are grateful for comments and discussions with P. Bicudo, J.E. Ribeiro and A. Szczepaniak. This work is supported in part by grants DOE DE-FG02-97ER41048 and NSF INT-9807009. F.J. Llanes-Estrada was a SURA-Jefferson Laboratory graduate fellowship recipient. Supercomputer time from NERSC is also acknowledged.
dc.description.abstractWe represent QCD at the hadronic scale by means of an effective Hamiltonian, H, formulated in the Coulomb gauge. As in the Nambu-Jona-Lasinio model, chiral symmetry is explicitly broken, however our approach is renormalizable and also includes confinement through a linear potential with slope specified by lattice gauge theory. This interaction generates an infrared integrable singularity and we detail the computationally intensive procedure necessary for numerical solution. We focus upon applications for the u, d, s and c quark flavors and compute the mass spectrum for the pseudoscalar, scalar and vector mesons. We also perform a comparative study of alternative many-body techniques for approximately diagonalizing, H: BCS for the vacuum ground state; TDA and RPA for the excited hadron states. The Dirac structure of the field theoretical Hamiltonian naturally generates spin dependent interactions, including tensor, spin-orbit and hyperfine, and we clarify the degree of level splitting due to both spin and chiral symmetry effects. Significantly, we find that roughly two thirds of the pi-rho mass difference is due to chiral symmetry and that only the RPA preserves chiral symmetry. We also document how hadronic mass scales are generated by chiral symmetry breaking in the model vacuum. In addition to the vacuum condensates, we compute meson decay constants and detail the Nambu-Goldstone realization of chiral symmetry by numerically verifying the Gell-Mann-Oakes-Renner relation.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23482
dc.identifier.doi10.1016/S0375-9474(01)01237-4
dc.identifier.issn0375-9474
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0375-9474(01)01237-4
dc.identifier.relatedurlhttp://arxiv.org/abs/hep-ph/0101078
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58833
dc.journal.titleNuclear Physics A
dc.language.isoeng
dc.page.final337
dc.page.initial303
dc.publisherElsevier Science Bv
dc.relation.projectIDDOE DE-FG02-97ER41048
dc.relation.projectIDNSF INT-9807009
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordChiral-Symmetry-Breaking
dc.subject.keywordConfining Potentials
dc.subject.keywordGoldstone Pion
dc.subject.keywordQcd
dc.subject.keywordModel
dc.subject.keywordTransitions
dc.subject.keywordQuarkonium
dc.subject.keywordPhysics
dc.subject.keywordPuzzle
dc.subject.keywordField
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleRelativistic many-body Hamiltonian approach to mesons
dc.typejournal article
dc.volume.number697
dcterms.references[1] A.P. Szczepaniak, E.S. Swanson, C.-R. Ji, S.R. Cotanch, Phys. Rev. Lett. 76 (1996) 2011. [2] D.G. Robertson, E.S. Swanson, A.P. Szczepaniak, C.-R. Ji, S.R. Cotanch, Phys. Rev. D 59 (1999) 074019. [3] F.J. Llanes-Estrada, S.R. Cotanch, Phys. Rev. Lett. 84 (2000) 1102. [4] E. Gubankova, C.-R. Ji, S.R. Cotanch, Phys. Rev. D 62 (2000) 125012. [5] F.J. Llanes-Estrada, S.R. Cotanch, Phys. Lett. B 504 (2001) 15. [6] A. Le Yaouanc, L. Oliver, O. Pene, J.-C. Raynal, Phys. Rev. D 29 (1984) 1233; A. Le Yaouanc, L. Oliver, S. Ono, O. Pene, J.-C. Raynal, Phys. Rev. D 31 (1985) 137. [7] S.L. Adler, A.C. Davis, Nucl. Phys. B 244 (1984) 469. [8] P. Bicudo, J.E. Ribeiro, Phys. Rev. D 42 (1990) 5; P. Bicudo, J.E. Ribeiro, J. Rodrigues, Phys. Rev. C 52 (1995) 4; P. Bicudo, dissertation presented to Instituto Superior Tecnico de Lisboa, 1987; P. Bicudo, J.E. Ribeiro, private communication. [9] R. Brockmann, W. Weise, E. Werner, Phys. Lett. B 122 (1983) 201; V. Bernard, R. Brockmann, M. Schaden, W. Weise, E. Werner, Nucl. Phys. A 412 (1984) 349; W. Weise, Int. Rev. Nucl. Phys., Vol. 1, World Scientific, 1984, p. 57. [10] D. Zwanziger, Nucl. Phys. B 485 (1997) 185. [11] N. Brambilla, A. Pineda, J. Soto, A. Vairo, Phys. Rev. D 60 (1999) 091502. [12] A.P. Szczepaniak, E.S. Swanson, Phys. Rev. D 55 (1997) 3987 and preprint. [13] F.J. Llanes-Estrada, A.P. Szczepaniak, S.R. Cotanch, to be published and private communication. [14] C.D. Roberts, A.G. Williams, Prog. Part. Nucl. Phys. 33 (1994) 477. [15] C.D. Roberts, R.T. Cahill, J. Praschifka, Ann. Phys. 188 (1988) 20; C.D. Roberts, R.T. Cahill, M.E. Sevior, N. Iannella, Phys. Rev. D 49 (1994) 125. [16] V.A. Miransky, Dynamical Symmetry Breaking in Quantum Field Theory, World Scientific, 1993. [17] P.C. Tandy, Prog. Part. Nucl. Phys. 39 (1997) 117. [18] A. Dobado, A. Gomez-Nicola, A.L.Maroto, J.R. Pelaez, Effective Lagrangians for the Standard Model, Springer Verlag, New York, 1997. [19] J. Gasser, H. Leutwyler, Ann. Phys. 158 (1984) 142. [20] P. Maris, C.D. Roberts, Phys. Rev. C 56 (1997) 3369. [21] J.M. Eisenberg, W. Greiner, Nuclear Theory, North Holland, 1976, Vol. 2, Appendix A, and Vol. 3. [22] P. Ring, P. Schuck, The Nuclear Many Body Problem, Springer-Verlag, New York, 1980. [23] R. Mattueck, A Guide to Feynman Diagrams in the Many Body Problem, Dover, 1992. [24] R. Dashen, Phys. Rev. D 3 (1971) 1879. [25] D.J. Thouless, Nucl. Phys. 22 (1961) 78. [26] Eur. Phys. J. C 15 (2000) 1–878. [27] A. De Rujula, H. Georgi, S.L. Glashow, Phys. Rev. D 12 (1975) 147. [28] P. Bicudo, Phys. Rev. C 60 (1999) 035209. [29] F.J. Gilman, R. Kauffman, Phys. Rev. D 36 (1987) 2761. [30] D. Kekez, D. Klabucar, M.D. Scadron, J. Phys. G 26 (2000) 1335. [31] Th. Feldmann, Int. J. Mod. Phys. A 15 (2000) 159. [32] N. Isgur, Phys. Rev. D 62 (2000) 014025. [33] N.A. Tornqvist, S. Ono, Phys. Rev. D 29 (1984) 110; Y. P. Kuang, T.-M. Yan, Phys. Rev. D 41 (1990) 155; A. Bradley, D. Robson, Z. Phys. C 6 (1980) 57; A. Arneodo, J.L. Femenias, Z. Phys. C 3 (1970) 37; Y.-B. Ding, K.-T. Chao, D.-H. Qin, Phys. Rev. D 51 (1995) 5064; Y.-B. Ding, K.-T. Chao, D.-H. Qin, Phys. Rev. D 44 (1991) 3562; R.-M. Richard, Z. Phys. C 4 (1980) 211; A. Bradley, D. Robson, Phys. Lett. B 93 (1980) 69. [34] M.E. Rose, Elementary Theory of Angular Momentum, Dover, 1995.
dspace.entity.typePublication
relation.isAuthorOfPublication6290fe55-04e6-4532-91e6-1df735bdbdca
relation.isAuthorOfPublication.latestForDiscovery6290fe55-04e6-4532-91e6-1df735bdbdca

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Llanes-Estrada_FJ68.pdf
Size:
319.33 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Llanes-Estrada_FJ68preprint.pdf
Size:
393.97 KB
Format:
Adobe Portable Document Format

Collections