Reduction of Homogeneous Pseudo-Kähler Structures by One-Dimensional Fibers

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We study the reduction procedure applied to pseudo-Kähler manifolds by a one dimensional Lie group acting by isometries and preserving the complex tensor. We endow the quotient manifold with an almost contact metric structure. We use this fact to connect pseudo-Kähler homogeneous structures with almost contact metric homogeneous structures. This relation will have consequences in the class of the almost contact manifold. Indeed, if we choose a pseudo-Kähler homogeneous structure of linear type, then the reduced, almost contact homogeneous structure is of linear type and the reduced manifold is of type C5⊕C6⊕C12 of Chinea-González classification.
UCM subjects
Unesco subjects
1. Ambrose, W.; Singer, I.M. On homogeneous Riemannian manifolds. Duke Math. J. 1958, 25, 647–669. 2. Kiricenko, V.F. On homogeneous Riemannian spaces with an invariant structure tensor. Sov. Math. Dokl. 1980, 21, 734–737. 3. Tricerri, F.; Tricerri, G.; Vanhecke, L. Homogeneous Structures on Riemannian Manifolds, 1st ed.; Lon. Math. Soc. Lecture Notes Series 83; Cambridge University Press: London, UK, 1983. 4. Abbena, E.; Garbiero, S. Almost hermitian homogeneous structures. Proc. Edinb. Math. Soc. 1988, 31, 375–395. 5. Calvaruso, G.; Castrillón López, M. Pseudo-Riemannian Homogeneous Structures, 1st ed.; Developments in Mathematics 59; Springer: New York, NY, USA, 2019. 6. Castrillón López, M.; Luján, I. Homogeneous structures of linear type on e-Kähler and e- quaternion Kähler manifolds Rev. Mat. Iberoam. 2017, 33, 139–168. 7. Castrillón López, M.; Luján, I. Reduction of homogeneous Riemannian structures. Proc. Edinh. Math. Soc. 2015, 58, 81–106. 8. Chinea, D.; González, C. A Classification of Almost Contact Metric Manifolds. Annali di Matematica Pura ed Applicata 1990, 156, 15–36. 9. Batat, W.; Gadea, P.; Oubiña, J.A. Homogeneous pseudo-Riemannian structures of linear type. J. Geom. Phys. 2011, 60, 745–764. 10. Carmona Jiménez, J.L.; Castrillón López, M. The Ambrose-Singer theorem for general homogeneous spaces with applications to symplectic geometry. arXiv 2020, unpublished. Available online: (accessed on 17 January 2020). 11. Luján. I. Reductive locally homogeneous pseudo-Riemannian manifolds and Ambrose–Singer connections. Diff. Geom. Appl. 2015, 41, 65–90. 12. Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds, 1st ed.; Progress in Mathematics 203; Birkhäuser: Basel, Switzerland, 2002. 13. Marsden, J.E.; Ostrowski, J. Symmetries in motion: Geometric foundations of motion control.Nonlinear Sci. Today 1996, 1–21. 14. Palais, R. A Global Formulation of the Lie Theory of Transformation Groups; Mem. Amer. Math. Soc. 22; American Mathematical Society: Providence, RI, USA, 1957. 15. Meessen, P. Homogeneous Lorentzian spaces admitting a homogeneous structure of type T1 + T2. J. Geom. Phys. 2006, 56, 754–761. 16. Castrillón López, M.; Luján, I. Strongly degenerate homogeneous pseudo-Kähler structures of linear type and complex plane waves. J. Geom. Phys. 2013, 73, 1–19.