Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Reduction of Homogeneous Pseudo-Kähler Structures by One-Dimensional Fibers

dc.contributor.authorCarmona Jiménez, J. L.
dc.contributor.authorCastrillón López, Marco
dc.date.accessioned2023-06-17T08:29:57Z
dc.date.available2023-06-17T08:29:57Z
dc.date.issued2020-08-01
dc.description.abstractWe study the reduction procedure applied to pseudo-Kähler manifolds by a one dimensional Lie group acting by isometries and preserving the complex tensor. We endow the quotient manifold with an almost contact metric structure. We use this fact to connect pseudo-Kähler homogeneous structures with almost contact metric homogeneous structures. This relation will have consequences in the class of the almost contact manifold. Indeed, if we choose a pseudo-Kähler homogeneous structure of linear type, then the reduced, almost contact homogeneous structure is of linear type and the reduced manifold is of type C5⊕C6⊕C12 of Chinea-González classification.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/75547
dc.identifier.doi10.3390/axioms9030094
dc.identifier.issn2075-1680
dc.identifier.officialurlhttps://doi.org/10.3390/axioms9030094
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7296
dc.journal.titleAxioms
dc.language.isoeng
dc.publisherMDPI
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu512
dc.subject.keywordAmbrose–Singer connections
dc.subject.keywordalmost contact metric manifolds
dc.subject.keywordhomogeneous manifolds
dc.subject.keywordhomogeneous structures
dc.subject.keywordpseudo-Kähler manifolds
dc.subject.keywordpseudo-Riemannian metric
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleReduction of Homogeneous Pseudo-Kähler Structures by One-Dimensional Fibers
dc.typejournal article
dcterms.references1. Ambrose, W.; Singer, I.M. On homogeneous Riemannian manifolds. Duke Math. J. 1958, 25, 647–669. 2. Kiricenko, V.F. On homogeneous Riemannian spaces with an invariant structure tensor. Sov. Math. Dokl. 1980, 21, 734–737. 3. Tricerri, F.; Tricerri, G.; Vanhecke, L. Homogeneous Structures on Riemannian Manifolds, 1st ed.; Lon. Math. Soc. Lecture Notes Series 83; Cambridge University Press: London, UK, 1983. 4. Abbena, E.; Garbiero, S. Almost hermitian homogeneous structures. Proc. Edinb. Math. Soc. 1988, 31, 375–395. 5. Calvaruso, G.; Castrillón López, M. Pseudo-Riemannian Homogeneous Structures, 1st ed.; Developments in Mathematics 59; Springer: New York, NY, USA, 2019. 6. Castrillón López, M.; Luján, I. Homogeneous structures of linear type on e-Kähler and e- quaternion Kähler manifolds Rev. Mat. Iberoam. 2017, 33, 139–168. 7. Castrillón López, M.; Luján, I. Reduction of homogeneous Riemannian structures. Proc. Edinh. Math. Soc. 2015, 58, 81–106. 8. Chinea, D.; González, C. A Classification of Almost Contact Metric Manifolds. Annali di Matematica Pura ed Applicata 1990, 156, 15–36. 9. Batat, W.; Gadea, P.; Oubiña, J.A. Homogeneous pseudo-Riemannian structures of linear type. J. Geom. Phys. 2011, 60, 745–764. 10. Carmona Jiménez, J.L.; Castrillón López, M. The Ambrose-Singer theorem for general homogeneous spaces with applications to symplectic geometry. arXiv 2020, unpublished. Available online: https://arxiv.org/abs/2001.06254 (accessed on 17 January 2020). 11. Luján. I. Reductive locally homogeneous pseudo-Riemannian manifolds and Ambrose–Singer connections. Diff. Geom. Appl. 2015, 41, 65–90. 12. Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds, 1st ed.; Progress in Mathematics 203; Birkhäuser: Basel, Switzerland, 2002. 13. Marsden, J.E.; Ostrowski, J. Symmetries in motion: Geometric foundations of motion control.Nonlinear Sci. Today 1996, 1–21. 14. Palais, R. A Global Formulation of the Lie Theory of Transformation Groups; Mem. Amer. Math. Soc. 22; American Mathematical Society: Providence, RI, USA, 1957. 15. Meessen, P. Homogeneous Lorentzian spaces admitting a homogeneous structure of type T1 + T2. J. Geom. Phys. 2006, 56, 754–761. 16. Castrillón López, M.; Luján, I. Strongly degenerate homogeneous pseudo-Kähler structures of linear type and complex plane waves. J. Geom. Phys. 2013, 73, 1–19.
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
castrillon_reduction.pdf
Size:
269.44 KB
Format:
Adobe Portable Document Format

Collections