Constructing solutions for a kinetic model of angiogenesis in annular domains
dc.contributor.author | Carpio Rodríguez, Ana María | |
dc.contributor.author | Duro, Gema | |
dc.contributor.author | Negreanu Pruna, Mihaela | |
dc.date.accessioned | 2023-06-17T22:43:38Z | |
dc.date.available | 2023-06-17T22:43:38Z | |
dc.date.issued | 2017-05 | |
dc.description.abstract | We present an iterative technique to construct stable solutions for an angiogenesis model set in an annular region. Branching, anastomosis and extension of blood vessel tips is described by an integrodifferential kinetic equation of Fokker-Planck type supplemented with nonlocal boundary conditions and coupled to a diffusion problem with Neumann boundary conditions through the force field created by the tumor induced angiogenic factor and the flux of vessel tips. Convergence proofs exploit balance equations, estimates of velocity decay and compactness results for kinetic operators, combined with gradient estimates of heat kernels for Neumann problems in non convex domains. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía, Comercio y Empresa (España) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/55835 | |
dc.identifier.citation | Carpio Rodríguez, A. M., Duro, G. y Negreanu Pruna, M. «Constructing Solutions for a Kinetic Model of Angiogenesis in Annular Domains». Applied Mathematical Modelling, vol. 45, mayo de 2017, pp. 303-22. DOI.org (Crossref), https://doi.org/10.1016/j.apm.2016.12.028. | |
dc.identifier.doi | 10.1016/j.apm.2016.12.028 | |
dc.identifier.issn | 0307-904X | |
dc.identifier.officialurl | https://doi.org/10.1016/j.apm.2016.12.028 | |
dc.identifier.relatedurl | https://www.sciencedirect.com/journal/applied-mathematical-modelling | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/18799 | |
dc.journal.title | Applied Mathematical Modelling | |
dc.language.iso | eng | |
dc.page.final | 322 | |
dc.page.initial | 303 | |
dc.publisher | Elsevier | |
dc.relation.projectID | MTM2014-56948-C2-1-P | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 519.8 | |
dc.subject.keyword | Angiogenesis | |
dc.subject.keyword | Integrodifferential model | |
dc.subject.keyword | Kinetic-diffusion equations | |
dc.subject.keyword | Fokker–Planck operator | |
dc.subject.keyword | Bounded domains | |
dc.subject.keyword | Nonlocal and Neumann boundary conditions | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.ucm | Investigación operativa (Matemáticas) | |
dc.subject.ucm | Sistema cardiovascular | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.subject.unesco | 1207 Investigación Operativa | |
dc.subject.unesco | 2411.03 Fisiología Cardiovascular | |
dc.title | Constructing solutions for a kinetic model of angiogenesis in annular domains | en |
dc.type | journal article | |
dc.volume.number | 45 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f301b87d-970b-4da8-9373-fef22632392a | |
relation.isAuthorOfPublication | 34eacc25-4f35-4e28-9665-9a3764841087 | |
relation.isAuthorOfPublication.latestForDiscovery | 34eacc25-4f35-4e28-9665-9a3764841087 |
Download
Original bundle
1 - 1 of 1