Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Constructing solutions for a kinetic model of angiogenesis in annular domains

dc.contributor.authorCarpio Rodríguez, Ana María
dc.contributor.authorDuro, Gema
dc.contributor.authorNegreanu Pruna, Mihaela
dc.date.accessioned2023-06-17T22:43:38Z
dc.date.available2023-06-17T22:43:38Z
dc.date.issued2017-05
dc.description.abstractWe present an iterative technique to construct stable solutions for an angiogenesis model set in an annular region. Branching, anastomosis and extension of blood vessel tips is described by an integrodifferential kinetic equation of Fokker-Planck type supplemented with nonlocal boundary conditions and coupled to a diffusion problem with Neumann boundary conditions through the force field created by the tumor induced angiogenic factor and the flux of vessel tips. Convergence proofs exploit balance equations, estimates of velocity decay and compactness results for kinetic operators, combined with gradient estimates of heat kernels for Neumann problems in non convex domains.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/55835
dc.identifier.citationCarpio Rodríguez, A. M., Duro, G. y Negreanu Pruna, M. «Constructing Solutions for a Kinetic Model of Angiogenesis in Annular Domains». Applied Mathematical Modelling, vol. 45, mayo de 2017, pp. 303-22. DOI.org (Crossref), https://doi.org/10.1016/j.apm.2016.12.028.
dc.identifier.doi10.1016/j.apm.2016.12.028
dc.identifier.issn0307-904X
dc.identifier.officialurlhttps://doi.org/10.1016/j.apm.2016.12.028
dc.identifier.relatedurlhttps://www.sciencedirect.com/journal/applied-mathematical-modelling
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18799
dc.journal.titleApplied Mathematical Modelling
dc.language.isoeng
dc.page.final322
dc.page.initial303
dc.publisherElsevier
dc.relation.projectIDMTM2014-56948-C2-1-P
dc.rights.accessRightsopen access
dc.subject.cdu519.8
dc.subject.keywordAngiogenesis
dc.subject.keywordIntegrodifferential model
dc.subject.keywordKinetic-diffusion equations
dc.subject.keywordFokker–Planck operator
dc.subject.keywordBounded domains
dc.subject.keywordNonlocal and Neumann boundary conditions
dc.subject.ucmEcuaciones diferenciales
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.ucmSistema cardiovascular
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.subject.unesco1207 Investigación Operativa
dc.subject.unesco2411.03 Fisiología Cardiovascular
dc.titleConstructing solutions for a kinetic model of angiogenesis in annular domainsen
dc.typejournal article
dc.volume.number45
dspace.entity.typePublication
relation.isAuthorOfPublicationf301b87d-970b-4da8-9373-fef22632392a
relation.isAuthorOfPublication34eacc25-4f35-4e28-9665-9a3764841087
relation.isAuthorOfPublication.latestForDiscovery34eacc25-4f35-4e28-9665-9a3764841087

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
52pre.pdf
Size:
308.24 KB
Format:
Adobe Portable Document Format

Collections