Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Constructing solutions for a kinetic model of angiogenesis in annular domains

Loading...
Thumbnail Image

Full text at PDC

Publication date

2017

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Carpio Rodríguez, A. M., Duro, G. y Negreanu Pruna, M. «Constructing Solutions for a Kinetic Model of Angiogenesis in Annular Domains». Applied Mathematical Modelling, vol. 45, mayo de 2017, pp. 303-22. DOI.org (Crossref), https://doi.org/10.1016/j.apm.2016.12.028.

Abstract

We present an iterative technique to construct stable solutions for an angiogenesis model set in an annular region. Branching, anastomosis and extension of blood vessel tips is described by an integrodifferential kinetic equation of Fokker-Planck type supplemented with nonlocal boundary conditions and coupled to a diffusion problem with Neumann boundary conditions through the force field created by the tumor induced angiogenic factor and the flux of vessel tips. Convergence proofs exploit balance equations, estimates of velocity decay and compactness results for kinetic operators, combined with gradient estimates of heat kernels for Neumann problems in non convex domains.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections