Defect assessment of Mg-doped GaN by beam injection techniques
Loading...
Download
Official URL
Full text at PDC
Publication date
2003
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citation
Abstract
The electronic recombination properties of Mg-doped GaN have been investigated by steady state and time-resolved cathodoluminescence (TRCL) in the scanning electron microscope, photocurrent (PC) spectroscopy, and optical beam induced current (OBIC). CL and OBIC maps reveal an inhomogeneous recombination activity in the investigated material. Deep levels giving rise to level-to-band transitions were detected by PC spectroscopy. A large PC quenching observed upon illumination with light of (2.65-2.85) eV is tentatively attributed to metastable traps within the band gap. CL spectra reveal the existence of emission bands centered at 85 K at 3.29, 3.20, 3.15, and 3.01 eV, respectively. Both time-resolved and steady-state CL measurements carried out under different excitation conditions indicate that the 3.15 and 3.01 eV emissions are likely related to donor-acceptor pair transitions. TRCL measurements also reveal different recombination kinetics for these bands and suggest that deep donors are involved in the mechanism responsible for the 3.01 eV emission.
Description
© 2003 American Institute of Physics.
The authors wish to thank D. C. Look, H. Morkoc¸, and J. van Nostrand for providing the investigated material. This work has been partially supported by MCYT through Project No. MAT2000-2119.