An episodic burst of massive genomic rearrangements and the origin of non-marine annelids

Citation

Vargas-Chávez, C., Benítez-Álvarez, L., Martínez-Redondo, G. I., Álvarez-González, L., Salces-Ortiz, J., Eleftheriadi, K., Escudero, N., Guiglielmoni, N., Flot, J.-F., Novo, M., Ruiz-Herrera, A., McLysaght, A., & Fernández, R. (2025). An episodic burst of massive genomic rearrangements and the origin of non-marine annelids. Nature Ecology & Evolution, 9(7), 1263-1279. https://doi.org/10.1038/s41559-025-02728-1

Abstract

The genomic basis of cladogenesis and adaptive evolutionary change has intrigued biologists for decades. Here we show that the tectonics of genome evolution in clitellates, a clade composed of most freshwater and all terrestrial species of the phylum Annelida, is characterized by extensive genome-wide scrambling that resulted in a massive loss of macrosynteny between marine annelids and clitellates. These massive rearrangements included the formation of putative neocentromeres with newly acquired transposable elements and preceded a further period of genome-wide reshaping events, potentially triggered by the loss of genes involved in genome stability and homoeostasis of cell division. Notably, whereas these rearrangements broke short-range interactions observed between Hox genes in marine annelids, they were reformed as long-range interactions in clitellates. Our findings reveal extensive genomic reshaping in clitellates at both the linear (2D) and three-dimensional (3D) levels, suggesting that unlike in other animal lineages where synteny conservation constrains structural evolution, clitellates exhibit a remarkable tolerance for chromosomal rearrangements. Our study thus suggests that the genomic landscape of Clitellata resulted from a rare burst of genomic changes that ended a long period of stability that persists across large phylogenetic distances.

Research Projects

Organizational Units

Journal Issue

Description

948281/EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)

Keywords

Collections