Automatic Counting of Microglial Cells in Healthy and Glaucomatous Mouse Retinas

Thumbnail Image
Full text at PDC
Publication Date
Gracia Pacheco, Pablo de
Gallego Collado, Beatriz Isabel
Hoz Montañana, María Rosa de
Ramirez Sebastian, Jose Manuel
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Public Library of Science
Google Scholar
Research Projects
Organizational Units
Journal Issue
Proliferation of microglial cells has been considered a sign of glial activation and a hallmark of ongoing neurodegenerative diseases. Microglia activation is analyzed in animal models of different eye diseases. Numerous retinal samples are required for each of these studies to obtain relevant data of statistical significance. Because manual quantification of microglial cells is time consuming, the aim of this study was develop an algorithm for automatic identification of retinal microglia. Two groups of adult male Swiss mice were used: age-matched controls (naïve, n = 6) and mice subjected to unilateral laser-induced ocular hypertension (lasered; n = 9). In the latter group, both hypertensive eyes and contralateral untreated retinas were analyzed. Retinal whole mounts were immunostained with anti Iba-1 for detecting microglial cell populations. A new algorithm was developed in MATLAB for microglial quantification; it enabled the quantification of microglial cells in the inner and outer plexiform layers and evaluates the area of the retina occupied by Iba-1+ microglia in the nerve fiber-ganglion cell layer. The automatic method was applied to a set of 6,000 images. To validate the algorithm, mouse retinas were evaluated both manually and computationally; the program correctly assessed the number of cells (Pearson correlation R = 0.94 and R = 0.98 for the inner and outer plexiform layers respectively). Statistically significant differences in glial cell number were found between naïve, lasered eyes and contralateral eyes (P<0.05, naïve versus contralateral eyes; P<0.001, naïve versus lasered eyes and contralateral versus lasered eyes). The algorithm developed is a reliable and fast tool that can evaluate the number of microglial cells in naïve mouse retinas and in retinas exhibiting proliferation. The implementation of this new automatic method can enable faster quantification of microglial cells in retinal pathologies.
Copyright: © 2015 de Gracia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
References 1. Hanisch UK. Functional diversity of microglia—how heterogeneous are they to begin with? Front Cell Neurosci. 2013;7: 65. doi: 10.3389/fncel.2013.00065. pmid:23717262 2. Kandel ER, Schwartz JH, Jessell TM. Neuronas y conducta. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principios de neurociencia. Madrid: McGraw-Hill/Interamericana de España; 2001. pp. 19–35. 3. Wang L, Cioffi GA, Cull G, Dong J, Fortune B. Immunohistologic evidence for retinal glial cell changes in human glaucoma. Invest Ophthalmol Vis Sci. 2002;43: 1088–1094. pmid:11923250 4. Perry VH, Nicoll JAR, Holmes C. Microglia in neurodegenerative disease. 2010;6: 193–201. doi: 10.1038/nrneurol.2010.17 5. Madeira MH, Boia R, Santos PF, Ambrosio AF, Santiago AR. Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediators Inflamm. 2015;2015: 673090. doi: 10.1155/2015/673090. pmid:25873768 6. von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci. 2015;7: 124. doi: 10.3389/fnagi.2015.00124. pmid:26257642 7. Barron KD. The microglial cell. A historical review. J Neurol Sci. 1995;134: 57–68. doi: 10.1016/0022-510x(95)00209-k 8. Kettenmann H, Verkhratsky A. Neuroglia: the 150 years after. Trends Neurosci. 2008;31: 653–659. doi: 10.1016/j.tins.2008.09.003. pmid:18945498 9. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Brit J Ophthalmol. 2006;90: 262–267. doi: 10.1136/bjo.2005.081224 10. Sociedad Europea de Glaucoma. Terminología y pautas para el glaucoma (3rd ed). Savona, Italia: Dogma; 2008. 11. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363: 1711–1720. pmid:15158634 doi: 10.1016/s0140-6736(04)16257-0 12. Tezel G, the Fourth ARVO/Pfizer Ophthalmics Research Institute Conference,Working Group. The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci. 2009;50: 1001–1012. doi: 10.1167/iovs.08-2717. pmid:19244206 13. Yuan L, Neufeld AH. Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res. 2001;64: 523–532. pmid:11391707 doi: 10.1002/jnr.1104 14. Wang X, Sam-Wah Tay Samuel, Ng Y. Nitric oxide, microglial activities and neuronal cell death in the lateral geniculate nucleus of glaucomatous rats. 2000;878: 136–147. doi: 10.1016/s0006-8993(00)02727-x 15. Wang X, Tay S, Ng YK. An immunohistochemical study of neuronal and glial cell reactions in retinae of rats with experimental glaucoma. Exp Brain Res. 2000;132: 476. pmid:10912828 doi: 10.1007/s002210000360 16. Naskar R, Wissing M, Thanos S. Detection of early neuron degeneration and accompanying microglial in the retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci. 2002;43: 2962–2968. pmid:12202516 17. Lam TT, Kwong JMK, Tso MOM. Early glial responses after acute elevated intraocular pressure in rats. Invest Ophthalmol Vis Sci. 2003;44: 638–645. pmid:12556393 doi: 10.1167/iovs.02-0255 18. Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC. Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2007;48: 3161–3177. pmid:17591886 doi: 10.1167/iovs.06-1282 19. Inman DM, Horner PJ. Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma. Glia. 2007;55: 942–953. pmid:17457855 doi: 10.1002/glia.20516 20. Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, et al. Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2008;49: 1437–1446. doi: 10.1167/iovs.07-1337. pmid:18385061 21. Inman DM, Lupien CB, Horner PJ. Manipulating glia to protect retinal ganglion cells in glaucoma. In: Gunvant P, editor. Glaucoma-current clinical and research aspects.: InTech; 2011. pp. 26–50. 22. Bosco A, Crish SD, Steele MR, Romero CO, Inman DM, Horner PJ, et al. Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One. 2012;7: e43602. doi: 10.1371/journal.pone.0043602. pmid:22952717 23. de Hoz R, Gallego BI, Ramírez AI, Rojas B, Salazar JJ, Valiente-Soriano FJ, et al. Rod-Like Microglia Are Restricted to Eyes with Laser-Induced Ocular Hypertension but Absent from the Microglial Changes in the Contralateral Untreated Eye. PLoS ONE. 2013;8: e83733. doi: 10.1371/journal.pone.0083733. pmid:24367610 24. Rojas B, Gallego BI, Ramírez AI, Salazar JJ, de Hoz R, Valiente-Soriano FJ, et al. Microglia in mouse retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers. J Neuroinflammation. 2014;11: 133. doi: 10.1186/1742-2094-11-133. pmid:25064005 25. Forero MG, Pennack JA, Learte AR, Hidalgo A. DeadEasy caspase: automatic counting of apoptotic cells in Drosophila. PLoS One. 2009;4: e5441. doi: 10.1371/journal.pone.0005441. pmid:19415123 26. Forero MG, Pennack JA, Hidalgo A. DeadEasy neurons: automatic counting of HB9 neuronal nuclei in Drosophila. Cytometry A. 2010;77: 371–378. doi: 10.1002/cyto.a.20877. pmid:20162534 27. Forero MG, Learte AR, Cartwright S, Hidalgo A. DeadEasy Mito-Glia: automatic counting of mitotic cells and glial cells in Drosophila. PLoS One. 2010;5: e10557. doi: 10.1371/journal.pone.0010557. pmid:20479944 28. Kozlowski C, Weimer RM. An Automated Method to Quantify Microglia Morphology and Application to Monitor Activation State Longitudinally In Vivo. PLoS ONE. 2012;7: e31814. doi: 10.1371/journal.pone.0031814. pmid:22457705 29. Forero MG, Kato K, Hidalgo A. Automatic cell counting in vivo in the larval nervous system of Drosophila. J Microsc. 2012;246: 202–212. doi: 10.1111/j.1365-2818.2012.03608.x. pmid:22429405 30. Hopkins AM, Wheeler B, Staii C, Kaplan DL, Atherton TJ. Semi-automatic quantification of neurite fasciculation in high-density neurite images by the neurite directional distribution analysis (NDDA). J Neurosci Methods. 2014;228: 100–109. doi: 10.1016/j.jneumeth.2014.03.006. pmid:24680908 31. Plog BA, Moll KM, Kang H, Iliff JJ, Dashnaw ML, Nedergaard M, et al. A novel technique for morphometric quantification of subarachnoid hemorrhage-induced microglia activation. J Neurosci Methods. 2014;229: 44–52. doi: 10.1016/j.jneumeth.2014.04.001. pmid:24735531 32. Salinas-Navarro M, Alarcon-Martinez L, Valiente-Soriano FJ, Ortin-Martinez A, Jimenez-Lopez M, Aviles-Trigueros M, et al. Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice. Mol Vis. 2009;15: 2578–2598. pmid:20011633 33. Gallego BI, Salazar JJ, de Hoz R, Rojas B, Ramírez AI, Salinas-Navarro M, et al. IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation. 2012;9: 92. doi: 10.1186/1742-2094-9-92. pmid:22583833 34. Aihara M, Lindsey JD, Weinreb RN. Twenty-four-hour pattern of mouse intraocular pressure. Exp Eye Res. 2003;77: 681–686. pmid:14609556 doi: 10.1016/j.exer.2003.08.011 35. Drouyer E, Dkhissi-Benyahya O, Chiquet C, WoldeMussie E, Ruiz G, Wheeler LA, et al. Glaucoma alters the circadian timing system. PLoS One. 2008;3: e3931. doi: 10.1371/journal.pone.0003931. pmid:19079596 36. Spitzer M, Wildenhain J, Rappsilber J, Tyers M. BoxPlotR: a web tool for generation of box plots. Nat Methods. 2014;11: 121–122. doi: 10.1038/nmeth.2811. pmid:24481215 37. Giulian D, Ingeman JE. Colony-stimulating factors as promoters of ameboid microglia. J Neurosci. 1988;8: 4707–4717. pmid:3058881 38. Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2001;2: 734–744. pmid:11584311 doi: 10.1038/35094583 39. Chauhan BC, Pan J, Archibald ML, LeVatte TL, Kelly ME, Tremblay F. Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage. Invest Ophthalmol Vis Sci. 2002;43: 2969–2976. pmid:12202517 40. Lewis GP, Erickson PA, Guerin CJ, Anderson DH, Fisher SK. Basic fibroblast growth factor: a potential regulator of proliferation and intermediate filament expression in the retina. J Neurosci. 1992;12: 3968–3978. pmid:1403094 doi: 10.1016/0014-4835(92)91069-a 41. Ganter S, Northoff H, Mannel D, Gebicke-Harter PJ. Growth control of cultured microglia. J Neurosci Res. 1992;33: 218–230. pmid:1333539 doi: 10.1002/jnr.490330205 42. Elkabes S, DiCicco-Bloom EM, Black IB. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci. 1996;16: 2508–2521. pmid:8786427 43. Kloss CU, Kreutzberg GW, Raivich G. Proliferation of ramified microglia on an astrocyte monolayer: characterization of stimulatory and inhibitory cytokines. J Neurosci Res. 1997;49: 248–254. pmid:9272647 doi: 10.1002/(sici)1097-4547(19970715)49:2<248::aid-jnr13>;2-z 44. Xiao BG, Link H. Immune regulation within the central nervous system. J Neurol Sci. 1998;157: 1–12. pmid:9600670 doi: 10.1016/s0022-510x(98)00049-5 45. Bajetto A, Bonavia R, Barbero S, Schettini G. Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem. 2002;82: 1311–1329. pmid:12354279 doi: 10.1046/j.1471-4159.2002.01091.x 46. Hanisch UK. Microglia as a source and target of cytokines. Glia. 2002;40: 140–155. pmid:12379902 doi: 10.1002/glia.10161 47. Biggerstaff J, Weidow B, Amirkhosravi A, Francis JL. Enumeration of leukocyte infiltration in solid tumors by confocal laser scanning microscopy. BMC Immunol. 2006;7: 16. pmid:16859557 doi: 10.1186/1471-2172-7-16 48. Peng H. Bioimage informatics: a new area of engineering biology. Bioinformatics. 2008;24: 1827–1836. doi: 10.1093/bioinformatics/btn346. pmid:18603566 49. Alyassin MA, Moon S, Keles HO, Manzur F, Lin RL, Haeggstrom E, et al. Rapid automated cell quantification on HIV microfluidic devices. Lab Chip. 2009;9: 3364–3369. doi: 10.1039/b911882a. pmid:19904402 50. Bandekar N, Wong A, Clausi D, Gorbet M. A novel approach to automated cell counting for studying human corneal epithelial cells. Conf Proc IEEE Eng Med Biol Soc. 2011;2011: 5997–6000. doi: 10.1109/IEMBS.2011.6091482. pmid:22255706 51. Bartels PH, Thompson D, Montironi R. Knowledge-based image analysis in the precursors of prostatic adenocarcinoma. Eur Urol. 1996;30: 234–242. pmid:8875205 52. Hamilton PW, Bartels PH, Montironi R, Anderson NH, Thompson D, Diamond J, et al. Automated histometry in quantitative prostate pathology. Anal Quant Cytol Histol. 1998;20: 443–460. pmid:9801763 53. Miller DH, Barkhof F, Frank JA, Parker GJ, Thompson AJ. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain. 2002;125: 1676–1695. pmid:12135961 doi: 10.1093/brain/awf177 54. Sharma R, Sharma A. Physiological basis and image processing in functional magnetic resonance imaging: neuronal and motor activity in brain. Biomed Eng Online. 2004;3: 13. pmid:15125779 doi: 10.1186/1475-925x-12-113 55. Nedzved A, Ablameyko S, Oczeretko E. Extraction of nerve cells in images with herpetic infections. Rocz Akad Med Bialymst. 2005;50: 284–288. 56. Bizrah M, Dakin SC, Guo L, Rahman F, Parnell M, Normando E, et al. A semi-automated technique for labeling and counting of apoptosing retinal cells. BMC Bioinformatics. 2014;15: 169-2105-15-169. doi: 10.1186/1471-2105-15-169 57. Bjornsson CS, Lin G, Al-Kofahi Y, Narayanaswamy A, Smith KL, Shain W, et al. Associative image analysis: a method for automated quantification of 3D multi-parameter images of brain tissue. J Neurosci Methods. 2008;170: 165–178. doi: 10.1016/j.jneumeth.2007.12.024. pmid:18294697 58. Wong ST, Ball AK, Sivak JG. Model of retinal surface area and neuron distribution in the avian eye. J Neurosci Methods. 2003;123: 1–9. pmid:12581844 doi: 10.1016/s0165-0270(02)00318-7 59. Grunwald JE, Metelitsina TI, Dupont JC, Ying GS, Maguire MG. Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. Invest Ophthalmol Vis Sci. 2005;46: 1033–1038. pmid:15728562 doi: 10.1167/iovs.04-1050 60. Li H, Chutatape O. Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng. 2004;51: 246–254. pmid:14765697 doi: 10.1109/tbme.2003.820400 61. Sanchez CI, Garcia M, Mayo A, Lopez MI, Hornero R. Retinal image analysis based on mixture models to detect hard exudates. Med Image Anal. 2009;13: 650–658. doi: 10.1016/ pmid:19539518 62. Ortin-Martinez A, Jimenez-Lopez M, Nadal-Nicolas FM, Salinas-Navarro M, Alarcon-Martinez L, Sauve Y, et al. Automated quantification and topographical distribution of the whole population of S- and L-cones in adult albino and pigmented rats. Invest Ophthalmol Vis Sci. 2010;51: 3171–3183. doi: 10.1167/iovs.09-4861. pmid:20071667