Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Energy efficiency optimization of task-parallel codes on asymmetric architectures

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2017

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

We present a family of policies that, integrated within a runtime task scheduler (Nanox), pursue the goal of improving the energy efficiency of task-parallel executions with no intervention from the programmer. The proposed policies tackle the problem by modifying the core operating frequency via DVFS mechanisms, or by enabling/disabling the mapping of tasks to specific cores at selected execution points, depending on the internal status of the scheduler. Experimental results on an asymmetric SoC (Exynos 5422) and for a specific operation (Cholesky factorization) reveal gains up to 29% in terms of energy efficiency and considerable reductions in average power

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections