Evidencias sobre los beneficios y dificultades del uso e implementación del aprendizaje profundo en la universidad
Loading...
Official URL
Full text at PDC
Publication date
2023
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Publisher
Dykinson
Citation
Fontana Abad, M., Camilli Trujillo, C. R., Martín Martín, M., & Bueno Álvarez, J. A. (2023). Evidencias sobre los beneficios y dificultades del uso e implementación del aprendizaje profundo en la universidad. En Innovación docente e investigación en educación: nuevas tendencias para el cambio en la enseñanza superior (pp. 689-700). Dykinson.
Abstract
Aunque se ha avanzado mucho en el aprendizaje profundo, falta una investigación organizada y objetiva sobre su empleo en el contexto educativo, y muy especialmente en la universidad, donde estas destrezas se tornan especialmente necesarias y relevantes para alcanzar los logros académicos requeridos por las diferentes titulaciones. De hecho, no existen revisiones sistemáticas en relación a esta materia en el contexto universitario, lo que hace necesario llevar a cabo un análisis en profundidad. Por ello, el objetivo de esta investigación es la exploración de los beneficios y dificultades de la implementación/uso del pensamiento profundo en la universidad a través de una revisión rápida de la literatura.
Description
Referecnias bibliográficas:
• Aguiar-Castillo, L., Clavijo-Rodriguez, A., Hernández-López, L., De Saa-Pérez, P. y PérezJiménez, R. (2021). Gamification and deep learning approaches in higher education. Journal of Hospitality, Leisure, Sport and Tourism Education, 29, 1-14. doi: 10.1016/j.jhlste.2020.100290
• Akgül, Y. y Osman, A. (2022). Facebook/Meta usage in higher education: A deep learningbased dual-stage SEM-ANN analysis. Education and Information Technologies, 27, 9821-9855. doi: 10.1007/s10639-022-11012-9
• Bhardwaj, P., Gupta, P. K., Panwar, H., Khubeb, M., Morales-Menendez, R. y Bhaik, A. (2021). Application of Higher Education Management in Colleges and Universities by Deep Learning. Computers and Electrical Engineering, 93, 1-11. doi: 10.1016/j.compeleceng.2021.107277
• Biggs, J. B. (1978). Individual and group differences in study processes. British Journal of Educational Psychology, 48(3), 266–279. doi: 10.1111/j.2044-8279.1978.tb03013.x
• Bruning, R. H., Schraw, G. J., y Norby, M. M. (2012). Psicología cognitiva y de la instrucción (5ª ed.). Pearson.
• Cirkony, C., Rickinson, M., Walsh, L., Gleeson, J., Salisbury, M. y Cutler, B. (2022). Reflections on conducting rapid reviews of educational research. Educational Research, 64(4), 371–390. doi: 10.1080/00131881.2022.2120514
• Doleck, T.; Lemay, D. J.; Basnet, R. B., y Bazelais, P. (2020). Predictive analytics in education: A comparison of deep learning frameworks. Education and Information Technologies., 25, 1951–1963. doi: s10639-019-10068-4
• Dolmans, D. H., Loyens, S. M., Marcq, H., y Gijbels, D. (2016). Deep and surface learning in problem-based learning: A review of the literature. Advances in Health Sciences Education, 21, 1087–1112. doi: 10.1007/s10459-015-9645-6
• Fernández, M. (2016). La escuela en la encrucijada. Fundación Santillana. King, V. J., Stevens, A., Nussbaumer-Streit, B., Kamel, C. y Garritty, C. (2022). Paper 2: Performing rapid reviews. Systematic Reviews, 11, 151. doi: 10.1186/s13643-022-02011-5
• Leilei, W., Rajendiran, S. y Gayathri, K. (2021). An emergency response system created to combat injuries during physical education training in a university using deep learning. The Electronic Library, 39(4), 505-525. doi: 10.1108/EL-07-2020-0175
• Li, S. y Liu, T. (2021). Performance Prediction for Higher Education Students Using Deep Learning. Complexity. doi: 10.1155/2021/9958203
• Li, Y., Zhang, L., Tian, Y. y Qi, W. (2022). Research on Teaching Practice of Blended Higher Education Based on Deep Learning Route. Computational Intelligence and Neuroscience, 3, 1- 8. doi: 10.1155/2022/5906335
• Meng, H. (2022). Analysis of the Relationship between Transformational Leadership and Educational Management in Higher Education Based on Deep Learning. Computational Intelligence and Neuroscience. doi: 10.1155/2022/5287922
• Ngwira, B., Gobin-Rahimbux, B. y Gooda, N. (2023). A Deep-Learning Framework for Analysing Students' Review in Higher Education. Computational Intelligence and Neuroscience. doi: 10.1155/2023/8462575
• Pnevmatikos, D., Christodoulou, P., Georgiadou, T., Lithoxoidou, A., Dimitriadou, A., Payan Carreira, R., Simões, M., Ferreira, D., Rebelo, H., Sebastião, L., et al. (2021). Think4jobs Training: Critical Thinking Training Packages for Higher Education Instructors and Labour Market Tutors. University of Western Macedonia. Recuperado de: https://shorturl.at/cipsD
• Segú, M. I. (2023). Autoethnography as a Tool for the Achievement of Deep Learning of University Students in Service-Learning Experiences. Social Sciences, 12(395), 1-12. doi: 10.3390/socsci12070395
• Simón, N., Del Valle, S., Rioja, N. y Cuadrado, J. (2023). Metacognitive and self-determined deep learning assessment in university students. Retos, 48, 861-872. doi: 10.47197/RETOS.V48.93421
• Tang, Y. y Liu, L. (2022). A Novel Deep Learning Technique for Higher Education System. Mathematical Problems in Engineering. doi: /10.1155/2022/4588263
• Thien, L. M., Leong, M.C., y Por, F. P. (2022). Factors contributing to Gen Z's deep learning: investigating undergraduates' course experience in Malaysian private higher education institutions. Journal of Applied Research in Higher Education, 14(4), 1637-1655. doi: 10.1108/JARHE-01-2021-0005
• Tian, Y., Sun, Y., Zhang, L. y Qi, W. (2022). Research on MOOC Teaching Mode in Higher Education Based on Deep Learning. Computational Intelligence and Neuroscience. ID 8031602. doi:10.1155/2022/8031602
• Tricco, A. C., Antony, J., Zarin, W., Strifler, L.; Ghassemi, M., Ivory, J., Perrier, L., Hutton, B., Moher, D., y Straus, S. E. (2015). A scoping- review of rapid review methods. BMC Med, 13, 224. doi: 10.1186/s12916-015-0465-6
• UCM. (2022). Manual de apoyo a la incorporación de la agenda 2030 a los contenidos docentes. El autor.
• Wu, H. (2022). Higher Education Environment Monitoring and Quality Assessment Model Using Big Data Analysis and Deep Learning. Journal of Environmental and Public Health, doi: 10.1155/2022/7281278
• Zhang, X. y Cao, Z. (2021). A Framework of an Intelligent Education System for Higher Education Based on Deep Learning. International Journal of Emerging Technologies in Learning, 16(7), 233-248. doi: 10.3991/ijet.v16i07.22123
• Zhao, A. y Ma, Y. (2022). Research on Recommendation of Big Data for Higher Education Based on Deep Learning. Scientific Programming, 1-8. doi: 10.1155/2022/5448442
• Zhong, L., Qi, C., y Gao, Y. (2022). Deep Learning-Assisted Performance Evaluation System for Teaching SCM in the Higher Education System: Performance Evaluation of Teaching Management. Information Resources Management Journal, 35(3), 1-22. doi: 10.4018/IRMJ.30445
• Zuo, M. y Wang, J. (2021). Higher Education Curriculum Evaluation Method Based on Deep Learning Model. Computational Intelligence and Neuroscience, 1-15. doi: 10.1155/2021/9036550