Nano-laminate vs. direct deposition of high permittivity gadolinium scandate on silicon by high pressure sputtering

Thumbnail Image
Full text at PDC
Publication Date
Feijoo, P.C.
Pampillón Arce, María Ángela
Fierro, J.L.G.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science SA
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this work we use the high pressure sputtering technique to deposit the high permittivity dielectric gadolinium scandate on silicon substrates. This nonconventional deposition technique prevents substrate damage and allows for growth of ternary compounds with controlled composition. Two different approaches were assessed: the first one consists in depositing the material directly from a stoichiometric GdScO_(3) target; in the second one, we anneal a nano-laminate of <0.5 nm thick Gd_(2)O_(3) and Sc_(2)O_(3) films in order to control the composition of the scandate. Metal-insulator-semiconductor capacitors were fabricated with platinum gates for electrical characterization. Accordingly, we grow a Gd-rich Gd_(2-x)Sc_(x)O_(3) film that, in spite of higher leakage currents, presents a better effective relative permittivity of 21 and lower density of defects.
© 2015 Elsevier B.V. The authors acknowledge “CAI de Técnicas Físicas” and “CAI de Espectroscopía” of the “Universidad Complutense de Madrid” for sample fabrication and FTIR measurements respectively. The microscopy works have been conducted in the "Laboratorio de Microscopias Avanzadas" at "Instituto de Nanociencia de Aragón” of the “Universidad de Zaragoza”. Authors thank them their technical support and expertise. This work was funded by the project TEC2010-18051 from the Spanish “Ministerio de Economía y Competitividad”, and the “Formación de Personal Investigador” program under grant BES-2011-043798.
UCM subjects
Electricidad, Electrónica (Física)
Unesco subjects
2202.03 Electricidad
[1] K. Huseková, M. Jurkovič, K. Cico, D. Machajdik, E. Dobročka, Roman Lupták, A. Mackova, K. Fröhlich, Preparation of High Permittivity GdScO3 Films by Liquid Injection MOCVD, ECS Meet. Abstr. 25 (2009) 1061. [2] C. Zhao, T. Witters, B. Brijs, H. Bender, O. Richard, M. Caymax, T. Heeg, J. Schubert, V.V. Afanas’ev, A. Stesmans, D.G. Schlom, Tern ary rare-earth metal oxide high-k layers on silicon oxide, Appl. Phys. Lett., 86 (2005) 132903. [3] M. Wagner, T. Heeg, J. Schubert, S. Lenk, S. Mantl, C. Zhao, M. Caymax, S. De Gendt, Gadolinium scandate thin films as an alternative gate dielectric prepared by electron beam evaporation, Appl. Phys. Lett., 88 (2006) 172901. [4] K.H. Kim, D.B. Farmer, J.-S.M. Lehn, P.V. Rao, R.G. Gordon, Atomic layer deposition of gadolinium scandate films with high dielectric constant and low leakage current, Appl. Phys. Lett., 89 (2006) 133512. [5] J.M.J. Lopes, E. Durgun Özben, M. Roeckerath, U. Littmark, R. Lupták, S. Lenk, M. Luysberg, A. Besmehn, U. Breuer, J. Schubert, S. Mantl, Amorphous ternary rareearth gate oxides for future integration in MOSFETs, Microelectron. Eng., 86 (2009) 1646. [6] K. Čičo, L. Hušeková, M. Ťapajna, D. Gregušová, R. Stoklas, J. Kuzmík, J. Carlin, N. Grandjean, D. Pogany, K. Fröhlich, Electrical properties of InAlN/GaN high electron mobility transistor with Al2O3, ZrO2, and GdScO3 gate dielectrics, J. Vac. Sci Technol. B, 29 (2011) 01A808. [7] A. Vincze, R. Lupták, K. Hušeková, E. Dobročka, K. Fröhlich, Thermal stability of GdScO3 and LaLuO3 films prepared by liquid injection MOCVD, Vacuum, 84 (2009) 170. [8] M. Roeckerath, J.M.J. Lopes, E. Durgun Özben, C. Sandow, S. Lenk, T. Heeg, J. Schubert, S. Mantl, Gadolinium scandate as an alternative gate dielectric in field effect transistors on conventional and strained silicon, Appl. Phys. A, 94 (2009) 521. [9] V. Capodieci, F. Wiest, T. Sulima, J. Schulze, I. Eisele, Examination and evaluation of La2O3 as gate dielectric for sub-100 nm CMOS and DRAM technology, Microelectron. Rel., 45 (2005) 937. [10] J. Robertson, High dielectric constant gate oxides for metal oxide Si transistors, Rep. Prog. Phys., 69 (2006) 327. [11] M. Houssa, L. Pantisano, L.-Å. Ragnarsson, R. Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, M.M. Heyns, Electrical properties of high-k gate dielectrics: Challenges, current issues, and possible solutions, Mater. Sci. and Eng., R51 (2006) 37. [12] G. He, L. Zu, Z. Sun, Q. Wan, L. Zhan, Integrations and challenges of novel high-k gate stacks in advanced CMOS technology, Prog. in Mater. Sci., 56 (2011) 475. [13] M. Toledano-Luque, M. L. Lucía, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, Optical spectroscopic study of the SiN/HfO2 interfacial formation during rf sputtering of HfO2, Appl. Phys. Lett., 91 (2007) 191502. [14] E. San Andrés, P.C. Feijoo, M.A. Pampillón, M.L. Lucía, A. del Prado, High Pressure Sputtering for High-K Dielectric Deposition. Is It Worth Trying?, ECS Trans., 61 (2014) 27. [15] J.A. Valles-Abarca, A. Gras-Martí, Evolutions towards thermalization and diffusion of sputtered particle fluxes: spatial profile, J. Appl. Phys., 55 (1984) 1370. [16] A. Gras-Martí, J.A. Vallés-Abarca, Slowing down and thermalization of sputtered particle fluxes: energy distributions, J. Appl. Phys., 54 (1983) 1071. [17] J.A. Kitt, K. Opsomer, M. Popovici, N.Menou, B. Kaczer, X.P. Wang, C. Adelmann, M.A. Pawlak, K. Tomida, A. Rothschild, B. Govoreanu, R. Degraeve, M. Schaekers, M. Zahid, A. Delabie, J. Meersschaut,W. Polspoel, S. Clima, G. Pourtois, W. Knaepen, C. Detavernier, V.V. Afanas'ev, T. Blomberg, D. Pierreux, J. Swerts, P. Fischer, J.W. Maes, D. Manger, W. Vandervorst, T. Conard, A. Franquet, P. Favia, H. Bender, B. Brijs, S. Van Elshocht, M. Jurczak, J. Van Houdt, D.J. Wouters, High-k dielectrics for future generation memory devices Microelectron. Eng., 86 (2009) 1789. [18] P.C. Feijoo, M.A. Pampillón, E. San Andrés, Optimization of gadolinium oxide growth deposited on Si by high pressure sputtering, J. Vac. Sci. Technol. B, 31 (2013) 01A103. [19] W. Kern, D. Puotinen, Cleaning solution based on hydrogen peroxide for use in silicon semiconductor technology, RCA Review, 31 (1970) 187. [20] D.K. Schroder, Semiconductor material and device characterization, third ed., John Wiley & Sons, Hoboken, New Jersey, 2006. [21] S. Wolf, R. N. Tauber, Silicon Processing for the VLSI era, vol. 1: Process Technology, Lattice Press, Sunset Beach, California, 1986. [22] J. R. Hauser, CVC Version 5.0, © 2000 NCSU Software, Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC. [23] D.V. Tsu, Infrared optical constants of silicon dioxide thin films by measurements of R and T, J. Vac. Sci. Technol. B, 18 (2000) 1796. [24] P.G. Pai, S.S. Chao, Y. Takagi, G. Lucovski, Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor-deposition, J. Vac. Sci. Technol. A, 4 (1986) 689. [25] S. Miyasaki, H. Nishimura, M. Fukuda, L. Ley, J. Ristein, Structure and electronic states of ultrathin SiO2 thermally grown on Si(100) and Si(111) surfaces, Appl. Phys. Surf., 113 (1997) 585. [26] A. Hardy, C. Adelmann, S. Van Elshocht, H. Van den Rul, M.K. Van Bael, S. De Gendt, M. D’Olieslaeger, M. Heyns, J. A. Kittl, J. Mullens, Study of interfacial reactions and phase stabilization of mixed Sc, Dy, Hf high k oxides by attenuated total reflectance infrared spectroscopy, Appl. Surf. Sci., 255 (2009) 7812. [27] P.C. Feijoo, a. del Prado, M. Toledano-Luque, E. San Andrés, M.L. Lucía, Nitridation of Si by N2 Electron Cyclotron Resonance Plasma and Integration with ScOx Deposition, J. Electrochem. Soc., 157 (2010) H430. [28] P.C. Feijoo, M.A. Pampillón, E. San Andrés, J.L.G. Fierro, Gadolinium scandate by high pressure sputtering for future generations of high k dielectrics, Semicond. Sci. Technol., 28 (2013) 085004. [29] P.C. Feijoo, M.A. Pampillón, E. San Andrés, M.L. Lucía, Optimization of scandium oxide growth by high pressure sputtering, Thin Solid Films, 526 (2012) 81. [30] C. Kittel, Introduction to solid state physics, eighth ed., John Wiley & Sons, New York, 2005. [31] International Technology Roadmap for Semiconductors (ITRS), [32] S. Zafar, A. Kumar, E. Gusev, E. Cartier, Threshold voltage instabilities in High-k Gate dielectric stacks, Trans. on Dev. and Mat., 5 (2005) 45.