Publication: Temperature sensitivity to the land-surface model in MM5 climate simulations over the Iberian Peninsula
Loading...
Official URL
Full text at PDC
Publication Date
2010-06
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
E Schweizerbartsche Verlags
Abstract
Three different Land Surface Models have been used in three high resolution climate simulations performed with the mesoscale model MM5 over the Iberian Peninsula. The main difference among them lies in the soil moisture treatment, which is dynamically modelled by only two of them (Noah and Pleim & Xiu models), while in the simplest model (Simple Five-Layers) it is fixed to climatological values. The simulated period covers 1958-2002, using the ERA40 reanalysis data as driving conditions. Focusing on near-surface air temperature, this work evaluates the skill of each simulation in reproducing mean values and temporal variability, by comparing the simulations with observed temperature series. When the simplest simulation was analyzed, the greatest discrepances were observed for the summer season, when both, the mean values and the temporal variability of the temperature series, were badly underestimated. These weaknesses are largely overcome in the other two simulations (performed by coupling a more advanced soil model to MM5), and there was greater concordance between the simulated and observed spatial patterns. The influence of a dynamic soil moisture parameterization and, therefore, a more realistic simulation of the latent and sensible heat fluxes between the land and the atmosphere, helps to explain these results.
Drei verschiedene Landoberflächenmodelle wurden verwendet, um drei hochauflösende Klimasimulationen für die iberische Halbinsel mit Hilfe des mesoskaligen Modells MM5 durchzuführen. Der Unterschied der drei Modelle liegt hauptsächlich in der Behandlung der Bodenfeuchtigkeit, die in zwei der Modelle (Noah und Pleim & Xiu) dynamisch modelliert wird, während sie im einfachsten Modell (Simple Five-Layers) durch klimatologische Größen festgelegt ist. Die simulierte Zeitspanne reicht von 1958 bis 2002, wobei als Simulationsbedingungen die Reanalyse-Daten ERA40 dienen. Indem wir uns auf bodennahe Lufttemperaturen konzentrieren, wird in dieser Arbeit die Qualität jeder einzelnen Simulation, welche die beobachteten Jahreszyklen, die räumlichen Strukturen und die zeitlichen Veränderungen der Temperatur wiedergibt, durch den Vergleich mit instrumentellenMonatsmitteltemperaturserien ausgewertet. Die einfachste Simulation zeigt die größte Diskrepanz zu den Beobachtungen der Sommersaison, da die Temperaturmittel und die zeitlichen Veränderungen der Temperatur maßgeblich unterschätzt wurden. Diese Schwächen wurden in den beiden anderen Simulationen (in denen ein fortschrittlicheres Bodenmodell an MM5 gekoppelt wurde) zum größten Teil beseitigt und eine höhere übereinstimmung zwischen simulierten und beobachteten räumlichen Strukturen wurde erreicht. Der Einfluss einer dynamischen Bodenfeuchtigkeitsparametrisierung und dadurch eine realistischere Simulation des latenten Flusses und der Wärmestromdichte zwischen Boden und Atmosphäre begr ünden diese Ergebnisse weitgehend.
Drei verschiedene Landoberflächenmodelle wurden verwendet, um drei hochauflösende Klimasimulationen für die iberische Halbinsel mit Hilfe des mesoskaligen Modells MM5 durchzuführen. Der Unterschied der drei Modelle liegt hauptsächlich in der Behandlung der Bodenfeuchtigkeit, die in zwei der Modelle (Noah und Pleim & Xiu) dynamisch modelliert wird, während sie im einfachsten Modell (Simple Five-Layers) durch klimatologische Größen festgelegt ist. Die simulierte Zeitspanne reicht von 1958 bis 2002, wobei als Simulationsbedingungen die Reanalyse-Daten ERA40 dienen. Indem wir uns auf bodennahe Lufttemperaturen konzentrieren, wird in dieser Arbeit die Qualität jeder einzelnen Simulation, welche die beobachteten Jahreszyklen, die räumlichen Strukturen und die zeitlichen Veränderungen der Temperatur wiedergibt, durch den Vergleich mit instrumentellenMonatsmitteltemperaturserien ausgewertet. Die einfachste Simulation zeigt die größte Diskrepanz zu den Beobachtungen der Sommersaison, da die Temperaturmittel und die zeitlichen Veränderungen der Temperatur maßgeblich unterschätzt wurden. Diese Schwächen wurden in den beiden anderen Simulationen (in denen ein fortschrittlicheres Bodenmodell an MM5 gekoppelt wurde) zum größten Teil beseitigt und eine höhere übereinstimmung zwischen simulierten und beobachteten räumlichen Strukturen wurde erreicht. Der Einfluss einer dynamischen Bodenfeuchtigkeitsparametrisierung und dadurch eine realistischere Simulation des latenten Flusses und der Wärmestromdichte zwischen Boden und Atmosphäre begr ünden diese Ergebnisse weitgehend.
Description
© by Gebrüder Borntraeger 2010. Lund Regional-Scale Climate Modelling Workshop (2nd. 2009. Lund, Sweden). This work was funded by the Spanish Ministry of the Environment (project ESCENA, Ref. 20080050084265) and the Spanish Ministry of Science and Technology (project INVENTO -CGL2005-06966-C07-04/CLI). The authors also gratefully acknowledge the funding from the Euro-Mediterranean Institute of Water (IEA). Thanks to Christina SCHWARZ for the abstract translation.
UCM subjects
Unesco subjects
Keywords
Citation
BECK, A., B. AHRENS, K. STADLBACHER, 2004: Impact of nesting strategies in dynamical downscaling of reanalysis data. – Geophys. Res. Lett. 31, L19101.
BLACKADAR, A. K., 1976: Modeling nocturnal boundarylayer. – Bull. Amer. Meteor. Soc. 57, 631.
BOO, K., W. KWON, H. BAEK, 2006: Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change. – Geophys. Res. Lett. 33, L01701.
CHEN, F., J. DUDHIA, 2001a: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. – Mon. Wea. Rev. 129, 569–585.
CHEN, F., J. DUDHIA, 2001b: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part II: Preliminary model validation. – Mon. Wea. Rev. 129, 587–604.
CRACKNELL, A., 1997: The Advanced Very High Resolution Radiometer. – London, Taylor & Francis.
DUDHIA, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. – J. Atmos. Sci. 46, 3077–3107.
DUDHIA, J., 1996: A multi-layer soil-temperature model for MM5. – In: Preprint, Sixth PSU/NCAR Mesoscale Model Users Workshop, 49–50, Boulder, CO.
FERNÁNDEZ, J., J.P. MONTÁVEZ, J. SÁENZ, J.F. GONZÁLEZ ROUCO, E. ZORITA, 2007: Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: Annual cycle. – J. Geophys. Res.-Atmos. 112(D4) D04101.
FISCHER, E. M., S. I. SENEVIRATNE, D. LUETHI, C. SCHAER, 2007: Contribution of land-atmosphere coupling to recent European summer heat waves. – Geophys. Res. Lett. 34 L06707.
FONT-TULLOT, I., 2000: Climatología de España y Portugal – Ediciones Universidad de Salamanca, Spain.
FRANK, H., L. LANDBERG, 1997: Modelling the wind climate of Ireland. – Bound.-Lay. Meteoror. 85, 359–378.
GÓMEZ NAVARRO, J., J. MONTÁVEZ, P. JIMÉNEZ GUERRERO, S. JÉREZ, J. GARCÍA VALERO, J. GONZÁLEZ ROUCO, 2010: Warming patterns in regional climate change projections over the Iberian Peninsula. – Meteorol. Z. 19, 275–285.
GRELL, G.A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. – Mon. Wea. Rev. 121, 764–787.
GRELL, G.A., J. DUDHIA, D.R. STAUFFER, 1994: A description of the fifth–generation Penn State/NCAR Mesoscale Model (MM5). – Technical Report NCAR/TN-398+STR, National Center for Atmospheric Research.
HENDERSON-SELLERS, A., P. IRANNEJAD, K. MCGUFFIE, A. PITMAN, 2003: Predicting land-surface climates – better skill or moving targets?. – Geophys. Res. Lett. 30, 1777.
HONG, S., H. PAN, 1996: Nonlocal boundary layer vertical diffusion in a Medium-Range Forecast Model. – Mon. Wea. Rev. 124, 2322–2339.
IM, E. S., W. J. GUTOWSKI, JR., F. GIORGI, 2008: Consistent changes in twenty-first century daily precipitation from regional climate simulations for Korea using two convection parameterizations. – Geophys. Res. Lett. 35 L14706.
IRANNEJAD, P., A. HENDERSON-SELLERS, S. SHARMEEN, 2003: Importance of land-surface parameterization for latent heat simulation in global atmospheric models. – Geophys. Res. Lett. 30 1904.
JUANG, H., S. HONG, 2001: Sensitivity of the NCEP regional spectral model to domain size and nesting strategy. – Mon. Wea. Rev. 129, 2904–2922.
KOSTER, R., P. DIRMEYER, Z. GUO, G. BONAN, E. CHAN, P. COX, C. GORDON, S. KANAE, E. KOWALCZYK, D. LAWRENCE, P. LIU, C. LU, S. MALYSHEV, B. MCAVANEY, K. MITCHELL, D. MOCKO, T. OKI, K. OLESON, A. PITMAN, Y. SUD, C. TAYLOR, D. VERSEGHY, R. VASIC, Y. XUE, T. YAMADA, GLACE TEAM, 2004: Regions of strong coupling between soil moisture and precipitation. – Science 305, 1138–1140.
LIONELLO, P., U. BOLDRIN, F. GIORGI, 2008: Future changes in cyclone climatology over Europe as inferred from a regional climate simulation. – Climate Dynam. 30, 657–671.
LOVELAND, T., B. REED, J. BROWN, D. OHLEN, Z. ZHU, L. YANG, J.W. MERCHANT, 2000: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. – Int. J. Remote Sens. 21, 1303–1330.
LUO, Y., E.H. BERBERY, K.E. MITCHELL, A.K. BETTS, 2007: Relationships between land surface and near-surface atmospheric variables in the NCEP north American regional reanalysis. – J. Hydrometeorol. 8, 1184–1203.
MANABE, S., 1969: Climate and ocean circulation. I. Atmospheric circulation and hydrology of earths surface. – Mon. Wea. Rev. 97, 739–774.
MARSHALL, C., R. PIELKE, L. STEYAERT, D. WILLARD, 2004: The impact of anthropogenic land-cover change on the Florida peninsula sea breezes and warm season sensible weather. – Mon. Wea. Rev. 132, 28–52.
MIAO, J. F., D. CHEN, K. BORNE, 2007: Evaluation and comparison of Noah and Pleim-Xiu land surface models in MM5 using GOTE2001 data: Spatial and temporal variations in near-surface air temperature. – J. Appl. Meteor. Climatol. 46, 1587–1605.
MLAWER, E., S. TAUBMAN, P. BROWN, M. IACONO, S. CLOUGH, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. – J. Geophys. Res.-Atmos. 102, 16663–16682.
MONAGHAN, A.J., D.H. BROMWICH, W. CHAPMAN, J.C. COMISO, 2008: Recent variability and trends of Antarctic near-surface temperature. – J. Geophys. Res.-Atmos. 113(D4) D04105.
OSBORNE, T., D. LAWRENCE, J. SLINGO, A. CHALLINOR, T. WHEELER, 2004: Influence of vegetation on the local climate and hydrology in the tropics: sensitivity to soil parameters. – Climate Dynam. 23, 45–61.
PAN, Z., M. SEGAL, R. ARRITT, E. TAKLE, 2004: On the potential change in solar radiation over the US due to increases of atmospheric greenhouse gases. – Renewable Energy 29, 1923–1928.
PIELKE, R., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. – Rev. Geophys. 39, 151–177.
PIELKE, R., G. LISTON, J. EASTMAN, L. LU, M. COUGHENOUR, 1999: Seasonal weather prediction as an initial value problem. – J. Geophys. Res.-Atmos. 104(D16), 19463–19479.
PITMAN, A., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. – Int. J. Climatol. 23, 479–510.
PLEIM, J. E., A. XIU, 1995: Development and testing of a surface flux and planetary boundary-layer model for application in mesoscale models. – J. Appl. Meteor. 34, 16–32.
PRYOR, S., R. BARTHELMIE, E. KJELLSTROM, 2005: Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model. – Climate Dynam. 25, 815–835.
SENEVIRATNE, S. I., D. LUETHI, M. LITSCHI, C. SCHAER, 2006: Land-atmosphere coupling and climate change in Europe. – Nature 443, 205–209.
SRIDHAR, V., R. ELLIOTT, F. CHEN, J. BROTZGE, 2002: Validation of the NOAH-OSU land surface model using surface flux measurements in Oklahoma. – J. Geophys. Res.-Atmos. 107, D20, 4418.
STENSRUD, D., 2007: Parameterization schemes. – Cambridge University Press, UK.
UPPALA, S., P. KALLBERG, A. SIMMONS, U. ANDRAE, V. BECHTOLD, M. FIORINO, J. GIBSON, J. HASELER, A. HERNÁNDEZ, G. KELLY, X. LI, K. ONOGI, S. SAARINEN, N. SOKKA, R. ALLAN, E. ANDERSSON, K. ARPE, M. BALMASEDA, A. BELJAARS, L. VAN DE BERG, J. BIDLOT, N. BORMANN, S. CAIRES, F. CHEVALLIER, A. DETHOF, M. DRAGOSAVAC, M. FISHER, M. FUENTES, S. HAGEMANN, E. HOLM, B. HOSKINS, L. ISAKSEN, P. JANSSEN, R. JENNE, A. MCNALLY, J. MAHFOUF, J. MORCRETTE, N. RAYNER, R. SAUNDERS, P. SIMON, A. STERL, K. TRENBERTH, A. UNTCH, D. VASILJEVIC, P. VITERBO, J. WOOLLEN, 2005: The ERA-40 re-analysis. – Quart. J. Roy. Meteor. Soc. 131, 2961–3012.
XIU, A., J. PLEIM, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. – J. Appl. Meteor. 40, 192–209.
ZHANG, J., W.-C. WANG, J. WEI, 2008: Assessing landatmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. – J. Geophys. Res.-Atmos. 113, D17, pages??.
ZHU, J., X.-Z. LIANG, 2007: Regional climate model simulations of US precipitation and surface air temperature during 1982–2002: Interannual variation. – J. Climate 20, 218–232.