Raman-scattering criteria for characterization of anneal-restored zinc blende single crystals: Application to Si+-implanted InP

Thumbnail Image
Full text at PDC
Publication Date
Martín, J.M.
Artús, L.
Cuscó, R.
Ibañez, J.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Institute of Physics
Google Scholar
Research Projects
Organizational Units
Journal Issue
We have studied the lattice recovery by rapid thermal annealing of Si+-implanted InP using Raman spectroscopy. The crystallinity recovery for different annealing temperatures of samples totally amorphized by the implantation can be monitored by means of their Raman spectra. However, free-charge coupling with the LO mode and possible misorientation of the recrystallized material may alter substantially the first-order Raman spectrum, making it unreliable for a good characterization of the lattice recovery. The study of second-order Raman spectrum overcomes the problems present in the analysis of first-order Raman spectrum and provides suitable criteria to assess the recrystallization of the implanted and annealed samples. After rapid thermal annealing at 875 degrees C for 10 s, the intensity of the second-order peaks approaches 70% of its value in virgin InP, and third-order Raman peaks are also clearly detected, evidencing the good lattice recovery achieved.
© American Institute of Physics. The authors gratefully acknowledge the Spanish Ministerio de Educación y Ciencia for financial support.
Unesco subjects
1) N. Moriya, I. Brener, R. Kalish, W. Pfeiffer, M. Deicher, R. Keller, R. Magerle, E. Recknagel, H. Skudlik, Th. Wichert, and H. Wolf, J. Appl. Phys., 73, 4248, 1993. 2) S. Ushioda, Solid State Commun., 15, 149, 1974. 3) C. S. R. Rao, S. Sundaram, R. L. Schmidt, and J. Comas, J. Appl. Phys., 54, 1808, 1983. 4) K. K. Tiong, P. M. Amirtharaj, F. H. Pollak, and D. E. Aspnes, Appl. Phys. Lett., 44, 122, 1984. 5) G. Burns, F. H. Dacol, C. R. Wie, E. Burnstein, and M. Cardona, Solid State Commun., 62, 449, 1987. 6) M. Holtz, R. Zallen, and O. Brafman, Phys. Rev. B, 38, 6097, 1988. 7) J. Wagner, Appl. Phys. Lett., 52, 1158, 1988. 8) J. Wagner and C. R. Fritsche, J. Appl. Phys., 64, 808, 1988. 9) U. V. Desnica, J. Wagner, T. E. Haynes, and O. W. Holland, J. Appl. Phys., 71, 2591, 1992. 10) R. Ashokan, K. P. Jain, H. S. Mavi, and M. Balkanski, J. Appl. Phys., 60, 1985, 1986. 11) M. Holtz, R. Zallen, A. E. Geissberger, and R. A. Sadler, J. Appl. Phys., 59, 1946, 1986. 12) J. Wagner and Ch. Hoffmann, Appl. Phys. Lett., 50, 682, 1987. 13) H. Yoshida and T. Katoda, J. Appl. Phys., 67, 7281, 1990. 14) M. Gargouri, B. Prevot, and C. Schwab, J. Appl. Phys., 62, 3902, 1987. 15) L. L. Abels, S. Sundaram, R. L. Schmidt, and J. Comas, Appl. Surf. Sci., 9, 2, 1981. 16) S. J. Yu, H. Asahi, S. Emura, H. Sumida, S. Gonda, and H. Tanoue, J. Appl. Phys., 66, 856, 1989. 17) E. Bedel, G. Landa, R. Carles, J. B. Renucci, J. M. Roquais, and P. N. Favennec, J. Appl. Phys., 60, 1980, 1986. 18) R. K. Nadella, M. V. Rao, D. S. Simons, P. H. Chi, M. Fatemi, and H. B. Dietrich, J. Appl. Phys., 70, 1750, 1991. 19) R. Cuscó, G. Talamàs, L. Artús, G. González-Díaz, and J. Martín, J. Appl. Phys., 79, 3927, 1996. 20) H. Shen, G. Yang, Z. Zhou, W. Huang, and S. Zou, J. Appl. Phys., 68, 4894, 1990. 21) J. M. Martín, S. García, I. Mártil, G. González-Díaz, R. Cuscó, and L. Artús, Mater. Sci. Technol., 11, 1203, 1995. 22) D. E. Aspnes and A. A. Studna, Phys. Rev. B, 27, 985, 1983. 23) D. Olego and M. Cardona, Phys. Rev. B, 24, 7217, 1981. 24) L. Artús, R. Cuscó, J. M. Martín, and G. González-Díaz, Phys. Rev. B, 50, 11, 552, 1994. 25) L. A. Christel and J. F. Gibbons, J. Appl. Phys., 52, 5050, 1981. 26) A. Dodabalapur and B. G. Streetman, J. Electron. Mater., 18, 65, 1989.