Publication:
Single Event Upsets under 14-MeV Neutrons in a 28-nm SRAM-based FPGA in Static Mode

Research Projects
Organizational Units
Journal Issue
Abstract
A sensitivity characterization of a Xilinx Artix-7 FPGA against 14.2 MeV neutrons is presented. The content of the internal SRAMs and flip-flops were downloaded in a PC and compared with a golden version of it. Flipped cells were identified and classified as cells of the configuration RAM, BRAM, or flip-flops. SBUs and MCUs with multiplicities ranging from 2 to 8 were identified using a statistical method. Possible shapes of multiple events are also investigated, showing a trend to follow wordlines. Finally, MUSCA SEP3 was used to make assesment for actual environments and an improvement of SEU injection test is proposed.
Description
Keywords
Citation
[1] L. A. Tambara, F. L. Kastensmidt, N. H. Medina, N. Added, V. A. P. Aguiar, F. Aguirre, E. L. A. Macchione, and M. A. G. Silveira, “Heavy Ions Induced Single Event Upsets Testing of the 28 nm Xilinx Zynq-7000 All Programmable SoC,” in IEEE Radiation Effects Data Workshop (REDW), pp. 29–34, Jul. 2015. [2] J. Tonfat, F. Lima Kastensmidt, L. Artola, G. Hubert, N. H. Medina, N. Added, V. A. P. Aguiar, F. Aguirre, E. L. A. Macchione, and M. A. G. Silveira, “Analyzing the influence of the angles of incidence and rotation on MBU events induced by low let heavy ions in a 28-nm SRAM-based FPGA,” IEEE Transactions on Nuclear Science, vol. 64, no. 8, pp. 2161–2168, Aug. 2017. [3] D. S. Lee, G. M. Swift, M. J. Wirthlin, and J. Draper, “Addressing Angular Single-Event Effects in the Estimation of On-Orbit Error Rates,” IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp. 2563–2569, Dec. 2015. [4] M. J. Gadlage, A. H. Roach, A. R. Duncan, A. M. Williams, D. P. Bossev, and M. J. Kay, “Soft Errors Induced by High-Energy Electrons,” IEEE Transactions on Device and Materials Reliability, vol. 17, no. 1, pp. 157–162, Mar. 2017. [5] M. J. Gadlage, A. H. Roach, A. R. Duncan, M. W. Savage, and M. J. Kay, “Electron-Induced Single-Event Upsets in 45-nm and 28-nm Bulk CMOS SRAM-Based FPGAs Operating at Nominal Voltage,” IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp. 2717–2724, Dec. 2015. [6] G. Bruni, P. Rech, L. Tambara, G. L. Nazar, F. L. Kastensmidt, R. Reis, and A. Paccagnella, “Power Dissipation Effects on 28nm FPGA-Based System on Chips Neutron Sensitivity,” in 22 nd International Conference on Very Large Scale Integration (VLSI-SoC), pp. 1–6, Oct. 2014. [7] A. M. Keller, T. A. Whiting, K. B. Sawyer, and M. J. Wirthlin, “Dynamic SEU Sensitivity of Designs on Two 28-nm SRAM-Based FPGA Architectures,” IEEE Transactions on Nuclear Science, vol. 65, no. 1, pp. 280–287, Jan. 2018. [8] G. Tsiligiannis, S. Danzeca, R. García Alía, A. Infantino, A. Lesea, M. Brugger, A. Masi, S. Gilardoni, and F. Saigné, “Radiation Effects on Deep Submicrometer SRAM-Based FPGAs Under the CERN Mixed-Field Radiation Environment,” IEEE Transactions on Nuclear Science, vol. 65, no. 8, pp. 1511–1518, Aug. 2018. [9] J. A. Clemente, F. J. Franco, F. Villa, M. Baylac, S. Rey, H. Mecha, J. A. Agapito, H. Puchner, G. Hubert, and R. Velazco, “Statistical Anomalies of Bitflips in SRAMs to Discriminate SBUs From MCUs,” IEEE Transactions on Nuclear Science, vol. 63, no. 4, pp. 2087–2094, Aug. 2016. [10] F. J. Franco, J. A. Clemente, M. Baylac, S. Rey, F. Villa, H. Mecha, J. A. Agapito, H. Puchner, G. Hubert, and R. Velazco, “Statistical deviations from the theoretical only-SBU model to estimate MCU rates in SRAMs,” IEEE Transactions on Nuclear Science, vol. 64, no. 8, pp. 2152–2160, Aug 2017. [11] F. Villa, M. Baylac, A. Billebaud, P. Boge, T. Cabanel, E. Labussière, O. Méplan, and S. Rey, “Multipurpose applications of the accelerator-based neutron source GENEPI2,” Il Nuovo Cimento C: Geophysics and Space Physics, vol. 38, no. 6, p. 182, Nov. 2015. [12] “Open On-Chip Debugger.” [Online]. Available: http://openocd.org/. [13] “OpenOCD modification for Virtex-5/Artix-7: GCAPTURE, GRESTORE and readback operations support.” [Online]. Available: http://cort.as/-PUFI. [14] F. L. Kastensmidt, J. Tonfat, T. Both, P. Rech, G. Wirth, R. Reis, F. Bruguier, P. Benoit, L. Torres, and C. Frost, “Voltage scaling and aging effects on soft error rate in SRAM-based FPGAs,” Microelectronics Reliability, vol. 54, no. 9, pp. 2344–2348, Sep.–Oct. 2014. [15] M. J. Gadlage, M. J. Kay, A. R. Duncan, M. W. Savage, J. D. Ingalls, D. Cruz-Rodriguez, and A. Howard, “Impact of Neutron-Induced Displacement Damage on the Multiple Bit Upset Sensitivity of a Bulk CMOS SRAM,” IEEE Transactions on Nuclear Science, vol. 59, no. 6, pp. 2722–2728, Dec. 2012. [16] H. J. Tausch, “Simplified Birthday Statistics and Hamming EDAC,” IEEE Transactions on Nuclear Science, vol. 56, no. 2, pp. 474–478, Apr. 2009. [17] F. J. Franco, J. A. Clemente, H. Mecha, and R. Velazco, “Influence of Randomness During the Interpretation of Results From Single-Event Experiments on SRAMs,” IEEE Transactions on Device and Material Reliability, vol. 19, no. 1, pp. 104–111, Mar. 2019. [18] F. J. Franco, J. A. Clemente, G. Korkian, J. C. Fabero, H. Mecha, and R. Velazco, “Inherent Uncertainty in the Determination of Multiple Event Cross Sections in Radiation Tests,” in European Conference on Radiation and its Effects on Components and Systems (RADECS2019), Sep. 2019. Submitted for publication to IEEE Transactions on Nuclear Science. [19] M. Wirthlin, D. Lee, G. Swift, and H. Quinn, “A Method and Case Study on Identifying Physically Adjacent Multiple-Cell Upsets Using 28-nm, Interleaved and SECDED-Protected Arrays,” IEEE Transactions on Nuclear Science, vol. 61, no. 6, pp. 3080–3087, Dec. 2014. [20] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical computing,” SIAM Review, vol. 59, no. 1, pp. 65–98, 2017. [21] Xilinx, “7 Series FPGAs Configuration User Guide. UG470 (v1.13.1) August 20, 2018.” [Online]. Available: https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf. [22] J. L. Autran, D. Munteanu, P. Roche, and G. Gasiot, “Real-time soft-error rate measurements: A review,” Microelectronics Reliability, vol. 54, no. 8, pp. 1455–1476, Aug. 2014. [23] T. Kato, T. Yamazaki, N. Saito, and H. Matsuyama, “Neutron-Induced Multiple-Cell Upsets in 20-nm Bulk SRAM: Angular Sensitivity and Impact of Multiwell Potential Perturbation,” IEEE Transactions on Nuclear Science, vol. 66, no. 7, pp. 1381–1389, Jun. 2019. [24] G. Hubert, S. Duzellier, C. Inguimbert, C. Boatella-Polo, F. Bezerra, and R. Ecoffet, “Operational SER Calculations on the SAC-C Orbit Using the Multi-Scales Single Event Phenomena Predictive Platform (MUSCA-SEP 3 ),” IEEE Transactions on Nuclear Science, vol. 56, no. 6, pp. 3032–3042, Dec. 2009. [25] “International Technology Roadmap for Semiconductors (ITRS).” [Online]. Available: http://www.itrs2.net/, 2019. [26] W. Liao, M. Hashimoto, S. Manabe, S. Abe, and Y. Watanabe, “Similarity Analysis on Neutron- and Negative Muon-Induced MCUs in 65-nm Bulk SRAM,” IEEE Transactions on Nuclear Science, vol. 66, no. 7, pp. 1390–1397, Jul. 2019. [27] B. Du, L. Sterpone, S. Azimi, D. Merodio Codinachs, V. Ferlet-Cavrois, C. Boatella Polo, R. G. Alía, M. Kastriotou, and P. Fernandez-Martínez, “Ultrahigh Energy Heavy Ion Test Beam on Xilinx Kintex-7 SRAM-Based FPGA,” IEEE Transactions on Nuclear Science, vol. 66, no. 7, pp. 1813–1819, Jul. 2019. [28] A. Pérez-Celis and M. J. Wirthlin, “Statistical Method to Extract Radiation-Induced Multiple-Cell Upsets in SRAM-Based FPGAs,” IEEE Transactions on Nuclear Science, vol. 67, no. 1, pp. 50–56, Jan. 2020. [29] G. Hubert, R. Velazco, C. Federico, A. Cheminet, C. Silva-Cardenas, L. V. E. Caldas, F. Pancher, V. Lacoste, F. Palumbo, W. Mansour, L. Artola, F. Pineda, and S. Duzellier, “Continuous High-Altitude Measurements of Cosmic Ray Neutrons and SEU/MCU at Various Locations: Correlation and Analyses Based-On MUSCA SEP 3 ,” IEEE Transactions on Nuclear Science, vol. 60, no. 4, pp. 2418–2426, Aug. 2013. [30] G. Hubert, L. Artola, and D. Regis, “Impact of scaling on the soft error sensitivity of bulk, FDSOI and FinFET technologies due to atmospheric radiation,” Integration, vol. 50, pp. 39–47, Jun. 2015. [31] James Ziegler, “SRIM - The Stopping and Range of Ions in Matter.” [Online]. Available: http://srim.org/. [32] S. Agostinelli et al., “Geant4: a simulation toolkit,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 506, no. 3, pp. 250–303, Jul. 2003. [33] J. Allison et al., “Geant4 developments and applications,” IEEE Transactions on Nuclear Science, vol. 53, no. 1, pp. 270–278, Feb. 2006. [34] “Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices, JEDEC Standard no. 89A (JESD89A).” [Online]. Available: https://www.jedec.org/standards-documents/docs/jesd-89a, Oct. 2006. [35] G. Hubert and A. Cheminet, “Radiation Effects Investigations Based on Atmospheric Radiation Model (ATMORAD) Considering GEANT4 Simulations of Extensive Air Showers and Solar Modulation Potential,” Radiation Research, vol. 184, no. 1, pp. 83–94, Jul. 2015. [36] C. Weulersse, S. Houssany, N. Guibbaud, J. Segura-Ruiz, J. Beaucour, F. Miller, and M. Mazurek, “Contribution of Thermal Neutrons to Soft Error Rate,” IEEE Transactions on Nuclear Science, vol. 65, no. 8, pp. 1851–1857, Aug. 2018. [37] F. Faure, R. Velazco, and P. Peronnard, “Single-Event-Upset-Like Fault Injection: A Comprehensive Framework,” IEEE Transactions on Nuclear Science, vol. 52, no. 6, pp. 2205–2209, Dec. 2005. [38] F. Serrano, J. A. Clemente, and H. Mecha, “A Methodology to Emulate Single Event Upsets in Flip-Flops using FPGAs through Partial Reconfiguration and Instrumentation,” IEEE Transactions on Nuclear Science, vol. 62, no. 4, pp. 1617–1624, Aug. 2015.
Collections